Matches in SemOpenAlex for { <https://semopenalex.org/work/W4315777737> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4315777737 abstract "As the core component of the Tunnel Boring Machine (TBM) rock-breaking function, disc-cutters directly affect the service life and construction efficiency of the TBM. Accurately predicting the wear status of disc-cutters is critical to efficient reel replacement decisions. However, due to the complex environment of cutters, both manual inspection and traditional sensor detection are subject to strong interference, which reduces efficiency and effectiveness. To solve this problem, a combined method LSTM-CNN based on long short-term memory (LSTM) network and convolutional neural network (CNN) is proposed, which predicts the wear status of the disc-cutters based on vibration dataset. The high-sensitivity vibration sensor is used to collect signals in the rock-breaking test, and then the deep learning model is used to eliminate interference signals to extract effective features, and the prediction of the three kinds of disc-cutters wear status (normal, uniform-wear failure and angled-wear failure) is realized. Comparing the LSTM-CNN model with support vector machine (SVM) and traditional LSTM, the results show that the LSTM-CNN outperforms the other two models." @default.
- W4315777737 created "2023-01-13" @default.
- W4315777737 creator A5003393191 @default.
- W4315777737 creator A5036934722 @default.
- W4315777737 creator A5051307670 @default.
- W4315777737 creator A5058021518 @default.
- W4315777737 creator A5072565450 @default.
- W4315777737 creator A5075000201 @default.
- W4315777737 creator A5080222493 @default.
- W4315777737 creator A5081402679 @default.
- W4315777737 date "2022-12-16" @default.
- W4315777737 modified "2023-10-18" @default.
- W4315777737 title "A Deep Learning Combination Model to Predict TBM Disc-cutter Wear Status" @default.
- W4315777737 cites W2015861736 @default.
- W4315777737 cites W2064675550 @default.
- W4315777737 cites W2344097077 @default.
- W4315777737 cites W2941609257 @default.
- W4315777737 cites W3041652226 @default.
- W4315777737 cites W3044572681 @default.
- W4315777737 cites W3081821516 @default.
- W4315777737 cites W3196348442 @default.
- W4315777737 cites W4282959869 @default.
- W4315777737 doi "https://doi.org/10.1109/iciea54703.2022.10006261" @default.
- W4315777737 hasPublicationYear "2022" @default.
- W4315777737 type Work @default.
- W4315777737 citedByCount "0" @default.
- W4315777737 crossrefType "proceedings-article" @default.
- W4315777737 hasAuthorship W4315777737A5003393191 @default.
- W4315777737 hasAuthorship W4315777737A5036934722 @default.
- W4315777737 hasAuthorship W4315777737A5051307670 @default.
- W4315777737 hasAuthorship W4315777737A5058021518 @default.
- W4315777737 hasAuthorship W4315777737A5072565450 @default.
- W4315777737 hasAuthorship W4315777737A5075000201 @default.
- W4315777737 hasAuthorship W4315777737A5080222493 @default.
- W4315777737 hasAuthorship W4315777737A5081402679 @default.
- W4315777737 hasConcept C108583219 @default.
- W4315777737 hasConcept C119857082 @default.
- W4315777737 hasConcept C121332964 @default.
- W4315777737 hasConcept C12267149 @default.
- W4315777737 hasConcept C127162648 @default.
- W4315777737 hasConcept C127413603 @default.
- W4315777737 hasConcept C153180895 @default.
- W4315777737 hasConcept C154945302 @default.
- W4315777737 hasConcept C198394728 @default.
- W4315777737 hasConcept C21200559 @default.
- W4315777737 hasConcept C24326235 @default.
- W4315777737 hasConcept C24890656 @default.
- W4315777737 hasConcept C31258907 @default.
- W4315777737 hasConcept C32022120 @default.
- W4315777737 hasConcept C41008148 @default.
- W4315777737 hasConcept C50644808 @default.
- W4315777737 hasConcept C81363708 @default.
- W4315777737 hasConceptScore W4315777737C108583219 @default.
- W4315777737 hasConceptScore W4315777737C119857082 @default.
- W4315777737 hasConceptScore W4315777737C121332964 @default.
- W4315777737 hasConceptScore W4315777737C12267149 @default.
- W4315777737 hasConceptScore W4315777737C127162648 @default.
- W4315777737 hasConceptScore W4315777737C127413603 @default.
- W4315777737 hasConceptScore W4315777737C153180895 @default.
- W4315777737 hasConceptScore W4315777737C154945302 @default.
- W4315777737 hasConceptScore W4315777737C198394728 @default.
- W4315777737 hasConceptScore W4315777737C21200559 @default.
- W4315777737 hasConceptScore W4315777737C24326235 @default.
- W4315777737 hasConceptScore W4315777737C24890656 @default.
- W4315777737 hasConceptScore W4315777737C31258907 @default.
- W4315777737 hasConceptScore W4315777737C32022120 @default.
- W4315777737 hasConceptScore W4315777737C41008148 @default.
- W4315777737 hasConceptScore W4315777737C50644808 @default.
- W4315777737 hasConceptScore W4315777737C81363708 @default.
- W4315777737 hasFunder F4320321001 @default.
- W4315777737 hasLocation W43157777371 @default.
- W4315777737 hasOpenAccess W4315777737 @default.
- W4315777737 hasPrimaryLocation W43157777371 @default.
- W4315777737 hasRelatedWork W2732542196 @default.
- W4315777737 hasRelatedWork W2738221750 @default.
- W4315777737 hasRelatedWork W2803710604 @default.
- W4315777737 hasRelatedWork W3021430260 @default.
- W4315777737 hasRelatedWork W3136979370 @default.
- W4315777737 hasRelatedWork W3193301557 @default.
- W4315777737 hasRelatedWork W4214491073 @default.
- W4315777737 hasRelatedWork W4311106074 @default.
- W4315777737 hasRelatedWork W4311257506 @default.
- W4315777737 hasRelatedWork W564581980 @default.
- W4315777737 isParatext "false" @default.
- W4315777737 isRetracted "false" @default.
- W4315777737 workType "article" @default.