Matches in SemOpenAlex for { <https://semopenalex.org/work/W4315777907> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4315777907 abstract "The use of deep learning in image analysis has been a game-changer. Common methods have relied on problem-specific algorithms to characterize pictures using properties like cell shape, count, intensity, and texture that were painstakingly constructed by human experts. With deep convolutional neural networks, feature learning occurs implicitly, and training the network often zeroes down on specific tasks. To get a vector representation of a picture by embedding, the image is fed into a preexisting deep neural network. An image embedding is a representation of the picture in fewer dimensions. It is a dense vector representation of the picture that may be used for things like categorization and plenty of other things. In this research, we profile pictures by using vectors of features and pre-trained deep learning architectures (Inception V3, VGG16, VGG19, Painter, SqueezeNet, and DeepLoc). The process of picture categorization makes use of these vectors. For experimentation purposes, we used the dataset containing images of yoga positions and classified them using Multilayer Perceptron (MLP) Classifier." @default.
- W4315777907 created "2023-01-13" @default.
- W4315777907 creator A5050202220 @default.
- W4315777907 creator A5054598631 @default.
- W4315777907 creator A5077884214 @default.
- W4315777907 date "2022-12-01" @default.
- W4315777907 modified "2023-10-06" @default.
- W4315777907 title "Image Embedding and Classification using Pre-Trained Deep Learning Architectures" @default.
- W4315777907 cites W1979185006 @default.
- W4315777907 cites W2145056192 @default.
- W4315777907 cites W2250539671 @default.
- W4315777907 cites W2982424689 @default.
- W4315777907 cites W3035102141 @default.
- W4315777907 cites W3041133507 @default.
- W4315777907 cites W3184324824 @default.
- W4315777907 cites W3186519276 @default.
- W4315777907 cites W3208463329 @default.
- W4315777907 cites W3209116923 @default.
- W4315777907 cites W4205674560 @default.
- W4315777907 cites W4206674329 @default.
- W4315777907 cites W4206696802 @default.
- W4315777907 cites W4225509948 @default.
- W4315777907 cites W4225597912 @default.
- W4315777907 cites W4239025696 @default.
- W4315777907 cites W4281632384 @default.
- W4315777907 cites W4285296091 @default.
- W4315777907 cites W4296327672 @default.
- W4315777907 doi "https://doi.org/10.1109/icsc56524.2022.10009560" @default.
- W4315777907 hasPublicationYear "2022" @default.
- W4315777907 type Work @default.
- W4315777907 citedByCount "1" @default.
- W4315777907 countsByYear W43157779072023 @default.
- W4315777907 crossrefType "proceedings-article" @default.
- W4315777907 hasAuthorship W4315777907A5050202220 @default.
- W4315777907 hasAuthorship W4315777907A5054598631 @default.
- W4315777907 hasAuthorship W4315777907A5077884214 @default.
- W4315777907 hasConcept C108583219 @default.
- W4315777907 hasConcept C115961682 @default.
- W4315777907 hasConcept C119857082 @default.
- W4315777907 hasConcept C153180895 @default.
- W4315777907 hasConcept C154945302 @default.
- W4315777907 hasConcept C17744445 @default.
- W4315777907 hasConcept C199539241 @default.
- W4315777907 hasConcept C2776359362 @default.
- W4315777907 hasConcept C41008148 @default.
- W4315777907 hasConcept C41608201 @default.
- W4315777907 hasConcept C50644808 @default.
- W4315777907 hasConcept C52622490 @default.
- W4315777907 hasConcept C59404180 @default.
- W4315777907 hasConcept C75294576 @default.
- W4315777907 hasConcept C81363708 @default.
- W4315777907 hasConcept C83665646 @default.
- W4315777907 hasConcept C94124525 @default.
- W4315777907 hasConcept C94625758 @default.
- W4315777907 hasConcept C95623464 @default.
- W4315777907 hasConceptScore W4315777907C108583219 @default.
- W4315777907 hasConceptScore W4315777907C115961682 @default.
- W4315777907 hasConceptScore W4315777907C119857082 @default.
- W4315777907 hasConceptScore W4315777907C153180895 @default.
- W4315777907 hasConceptScore W4315777907C154945302 @default.
- W4315777907 hasConceptScore W4315777907C17744445 @default.
- W4315777907 hasConceptScore W4315777907C199539241 @default.
- W4315777907 hasConceptScore W4315777907C2776359362 @default.
- W4315777907 hasConceptScore W4315777907C41008148 @default.
- W4315777907 hasConceptScore W4315777907C41608201 @default.
- W4315777907 hasConceptScore W4315777907C50644808 @default.
- W4315777907 hasConceptScore W4315777907C52622490 @default.
- W4315777907 hasConceptScore W4315777907C59404180 @default.
- W4315777907 hasConceptScore W4315777907C75294576 @default.
- W4315777907 hasConceptScore W4315777907C81363708 @default.
- W4315777907 hasConceptScore W4315777907C83665646 @default.
- W4315777907 hasConceptScore W4315777907C94124525 @default.
- W4315777907 hasConceptScore W4315777907C94625758 @default.
- W4315777907 hasConceptScore W4315777907C95623464 @default.
- W4315777907 hasLocation W43157779071 @default.
- W4315777907 hasOpenAccess W4315777907 @default.
- W4315777907 hasPrimaryLocation W43157779071 @default.
- W4315777907 hasRelatedWork W2114586818 @default.
- W4315777907 hasRelatedWork W2279398222 @default.
- W4315777907 hasRelatedWork W2547232919 @default.
- W4315777907 hasRelatedWork W2766604260 @default.
- W4315777907 hasRelatedWork W2986507176 @default.
- W4315777907 hasRelatedWork W3156786002 @default.
- W4315777907 hasRelatedWork W4225852842 @default.
- W4315777907 hasRelatedWork W4299822940 @default.
- W4315777907 hasRelatedWork W4366492315 @default.
- W4315777907 hasRelatedWork W4384103574 @default.
- W4315777907 isParatext "false" @default.
- W4315777907 isRetracted "false" @default.
- W4315777907 workType "article" @default.