Matches in SemOpenAlex for { <https://semopenalex.org/work/W4315779543> ?p ?o ?g. }
- W4315779543 endingPage "804" @default.
- W4315779543 startingPage "783" @default.
- W4315779543 abstract "The northern Gulf of Mexico coast is affected by the North Atlantic hurricane season, which causes storm surge disasters every year and brings serious economic losses to the southern USA; therefore, it is necessary to make an accurate advance prediction of storm surge level. In this paper, a model with simple structure, fast computation speed, and accurate prediction results has been constructed based on nonlinear auto-regressive exogenous (NARX) neural network. Five types of data collected from observation stations are selected as the input factors of the model. To improve the model's computational efficiency, a neuron pruning strategy based on sensitivity analysis is introduced. By analyzing the output weights of the neurons in the hidden layer on the sensitivity of the model prediction output, the model structure can be adjusted accordingly. Moreover, a modular prediction method is introduced based on the tide harmonic analysis data so as to make the model prediction results more accurate. At last, a complete storm surge level prediction model, pruned modular (PM)-NARX, is constructed. In this paper, the model is trained by using historical data and used for storm surge level prediction along the northern Gulf of Mexico coast in 2020. The simulation test results show that the correlation between the predicted data and the observed data is stable above 0.99 at 12 h in advance and the model is able to produce the results within one minute. The prediction speed, accuracy, and stability are higher than those of conventional models. In addition, two sets of follow-up tests show that the prediction accuracy of the model can still maintain a high level. The above can prove that the pruned modular (PM)-NARX model can effectively provide early warning before the storm surge to avoid property damage and human casualties." @default.
- W4315779543 created "2023-01-13" @default.
- W4315779543 creator A5006826260 @default.
- W4315779543 creator A5008545547 @default.
- W4315779543 creator A5015819673 @default.
- W4315779543 creator A5047499666 @default.
- W4315779543 creator A5056027792 @default.
- W4315779543 creator A5068862707 @default.
- W4315779543 creator A5081117163 @default.
- W4315779543 date "2023-01-12" @default.
- W4315779543 modified "2023-09-30" @default.
- W4315779543 title "Storm surge level prediction based on improved NARX neural network" @default.
- W4315779543 cites W1490950177 @default.
- W4315779543 cites W1965906651 @default.
- W4315779543 cites W1967429206 @default.
- W4315779543 cites W1969031128 @default.
- W4315779543 cites W1985048212 @default.
- W4315779543 cites W1986241067 @default.
- W4315779543 cites W1988495782 @default.
- W4315779543 cites W1988908739 @default.
- W4315779543 cites W1997036198 @default.
- W4315779543 cites W1997151153 @default.
- W4315779543 cites W2001381117 @default.
- W4315779543 cites W2058674828 @default.
- W4315779543 cites W2083671433 @default.
- W4315779543 cites W2089640048 @default.
- W4315779543 cites W2116512828 @default.
- W4315779543 cites W2126831543 @default.
- W4315779543 cites W2131441398 @default.
- W4315779543 cites W2140196823 @default.
- W4315779543 cites W2142105298 @default.
- W4315779543 cites W2161563946 @default.
- W4315779543 cites W2333217395 @default.
- W4315779543 cites W2524309601 @default.
- W4315779543 cites W2527437492 @default.
- W4315779543 cites W2607281691 @default.
- W4315779543 cites W2886908430 @default.
- W4315779543 cites W2909918885 @default.
- W4315779543 cites W2956845476 @default.
- W4315779543 cites W2979398973 @default.
- W4315779543 cites W3003978453 @default.
- W4315779543 cites W3007363606 @default.
- W4315779543 cites W3066846904 @default.
- W4315779543 cites W3115308539 @default.
- W4315779543 cites W3119705614 @default.
- W4315779543 cites W3154468772 @default.
- W4315779543 cites W3156413967 @default.
- W4315779543 cites W3159304892 @default.
- W4315779543 cites W3181547012 @default.
- W4315779543 cites W3203908408 @default.
- W4315779543 cites W4200045909 @default.
- W4315779543 cites W4206271087 @default.
- W4315779543 cites W4240172095 @default.
- W4315779543 cites W4242989628 @default.
- W4315779543 cites W4295883527 @default.
- W4315779543 cites W4309075705 @default.
- W4315779543 cites W4312139068 @default.
- W4315779543 doi "https://doi.org/10.1007/s10825-023-02005-z" @default.
- W4315779543 hasPublicationYear "2023" @default.
- W4315779543 type Work @default.
- W4315779543 citedByCount "1" @default.
- W4315779543 countsByYear W43157795432023 @default.
- W4315779543 crossrefType "journal-article" @default.
- W4315779543 hasAuthorship W4315779543A5006826260 @default.
- W4315779543 hasAuthorship W4315779543A5008545547 @default.
- W4315779543 hasAuthorship W4315779543A5015819673 @default.
- W4315779543 hasAuthorship W4315779543A5047499666 @default.
- W4315779543 hasAuthorship W4315779543A5056027792 @default.
- W4315779543 hasAuthorship W4315779543A5068862707 @default.
- W4315779543 hasAuthorship W4315779543A5081117163 @default.
- W4315779543 hasBestOaLocation W43157795432 @default.
- W4315779543 hasConcept C105306849 @default.
- W4315779543 hasConcept C108010975 @default.
- W4315779543 hasConcept C119857082 @default.
- W4315779543 hasConcept C127413603 @default.
- W4315779543 hasConcept C153294291 @default.
- W4315779543 hasConcept C205649164 @default.
- W4315779543 hasConcept C21200559 @default.
- W4315779543 hasConcept C22818535 @default.
- W4315779543 hasConcept C24326235 @default.
- W4315779543 hasConcept C41008148 @default.
- W4315779543 hasConcept C42536954 @default.
- W4315779543 hasConcept C50644808 @default.
- W4315779543 hasConcept C6557445 @default.
- W4315779543 hasConcept C86803240 @default.
- W4315779543 hasConceptScore W4315779543C105306849 @default.
- W4315779543 hasConceptScore W4315779543C108010975 @default.
- W4315779543 hasConceptScore W4315779543C119857082 @default.
- W4315779543 hasConceptScore W4315779543C127413603 @default.
- W4315779543 hasConceptScore W4315779543C153294291 @default.
- W4315779543 hasConceptScore W4315779543C205649164 @default.
- W4315779543 hasConceptScore W4315779543C21200559 @default.
- W4315779543 hasConceptScore W4315779543C22818535 @default.
- W4315779543 hasConceptScore W4315779543C24326235 @default.
- W4315779543 hasConceptScore W4315779543C41008148 @default.
- W4315779543 hasConceptScore W4315779543C42536954 @default.
- W4315779543 hasConceptScore W4315779543C50644808 @default.
- W4315779543 hasConceptScore W4315779543C6557445 @default.