Matches in SemOpenAlex for { <https://semopenalex.org/work/W4315781674> ?p ?o ?g. }
- W4315781674 endingPage "439" @default.
- W4315781674 startingPage "439" @default.
- W4315781674 abstract "Several large-scale porphyry copper deposits (PCDs) with high economic value have been excavated in the Duolong ore district, Tibet, China. However, the high altitudes and harsh conditions in this area make traditional exploration difficult. Hydrothermal alteration minerals related to PCDs with diagnostic spectral absorption features in the visible–near-infrared–shortwave-infrared ranges can be effectively identified by remote sensing imagery. Mainly based on hyperspectral imagery supplemented by multispectral imagery and geochemical element data, the Duolong ore district was selected to conduct data-driven PCD prospectivity modelling. A total of 11 known deposits and 17 evidential layers of multisource geoscience information related to Cu mineralization constitute the input datasets of the predictive models. A deep learning convolutional neural network (CNN) model was applied to mineral prospectivity mapping, and its applicability was tested by comparison to conventional machine learning models, such as support vector machine and random forest. CNN achieves the greatest classification performance with an accuracy of 0.956. This is the first trial in Duolong to conduct mineral prospectivity mapping combined with remote imagery and geochemistry based on deep learning methods. Four metallogenic prospective sites were delineated and verified through field reconnaissance, indicating that the application of deep learning-based methods in PCD prospecting proposed in this paper is feasible by utilizing geoscience big data such as remote sensing datasets and geochemical elements." @default.
- W4315781674 created "2023-01-13" @default.
- W4315781674 creator A5001389664 @default.
- W4315781674 creator A5018670563 @default.
- W4315781674 creator A5025837850 @default.
- W4315781674 creator A5063996707 @default.
- W4315781674 creator A5087614940 @default.
- W4315781674 date "2023-01-11" @default.
- W4315781674 modified "2023-10-14" @default.
- W4315781674 title "Mineral Prospectivity Mapping of Porphyry Copper Deposits Based on Remote Sensing Imagery and Geochemical Data in the Duolong Ore District, Tibet" @default.
- W4315781674 cites W1501376651 @default.
- W4315781674 cites W1608180792 @default.
- W4315781674 cites W1778870018 @default.
- W4315781674 cites W1965619562 @default.
- W4315781674 cites W1988386267 @default.
- W4315781674 cites W1997507409 @default.
- W4315781674 cites W2012749606 @default.
- W4315781674 cites W2013697035 @default.
- W4315781674 cites W2013904582 @default.
- W4315781674 cites W2018366608 @default.
- W4315781674 cites W2047361407 @default.
- W4315781674 cites W2053762059 @default.
- W4315781674 cites W2091447052 @default.
- W4315781674 cites W2093189921 @default.
- W4315781674 cites W2097153652 @default.
- W4315781674 cites W2107431407 @default.
- W4315781674 cites W2122452972 @default.
- W4315781674 cites W2136625467 @default.
- W4315781674 cites W2149809760 @default.
- W4315781674 cites W2165394332 @default.
- W4315781674 cites W2170391102 @default.
- W4315781674 cites W2468660937 @default.
- W4315781674 cites W2509716077 @default.
- W4315781674 cites W2562424337 @default.
- W4315781674 cites W2568355616 @default.
- W4315781674 cites W2765279289 @default.
- W4315781674 cites W2765982206 @default.
- W4315781674 cites W2771608818 @default.
- W4315781674 cites W2774595919 @default.
- W4315781674 cites W2782517596 @default.
- W4315781674 cites W2790888198 @default.
- W4315781674 cites W2795963374 @default.
- W4315781674 cites W2800339958 @default.
- W4315781674 cites W2884409695 @default.
- W4315781674 cites W2889559152 @default.
- W4315781674 cites W2915254566 @default.
- W4315781674 cites W2919115771 @default.
- W4315781674 cites W2919746781 @default.
- W4315781674 cites W2935625758 @default.
- W4315781674 cites W2936859456 @default.
- W4315781674 cites W2954328919 @default.
- W4315781674 cites W2963371848 @default.
- W4315781674 cites W2974158260 @default.
- W4315781674 cites W2991616716 @default.
- W4315781674 cites W2995099525 @default.
- W4315781674 cites W2997189074 @default.
- W4315781674 cites W3002325577 @default.
- W4315781674 cites W3014811513 @default.
- W4315781674 cites W3086825826 @default.
- W4315781674 cites W3100321043 @default.
- W4315781674 cites W3101919335 @default.
- W4315781674 cites W3164740228 @default.
- W4315781674 cites W3208943037 @default.
- W4315781674 cites W4233760599 @default.
- W4315781674 cites W4250699182 @default.
- W4315781674 cites W4281690394 @default.
- W4315781674 cites W4295213478 @default.
- W4315781674 cites W4309241204 @default.
- W4315781674 cites W92574158 @default.
- W4315781674 doi "https://doi.org/10.3390/rs15020439" @default.
- W4315781674 hasPublicationYear "2023" @default.
- W4315781674 type Work @default.
- W4315781674 citedByCount "1" @default.
- W4315781674 countsByYear W43157816742023 @default.
- W4315781674 crossrefType "journal-article" @default.
- W4315781674 hasAuthorship W4315781674A5001389664 @default.
- W4315781674 hasAuthorship W4315781674A5018670563 @default.
- W4315781674 hasAuthorship W4315781674A5025837850 @default.
- W4315781674 hasAuthorship W4315781674A5063996707 @default.
- W4315781674 hasAuthorship W4315781674A5087614940 @default.
- W4315781674 hasBestOaLocation W43157816741 @default.
- W4315781674 hasConcept C109007969 @default.
- W4315781674 hasConcept C111696902 @default.
- W4315781674 hasConcept C114793014 @default.
- W4315781674 hasConcept C127313418 @default.
- W4315781674 hasConcept C156622251 @default.
- W4315781674 hasConcept C159078339 @default.
- W4315781674 hasConcept C159390177 @default.
- W4315781674 hasConcept C159750122 @default.
- W4315781674 hasConcept C165205528 @default.
- W4315781674 hasConcept C16674752 @default.
- W4315781674 hasConcept C17409809 @default.
- W4315781674 hasConcept C175181221 @default.
- W4315781674 hasConcept C179319051 @default.
- W4315781674 hasConcept C2776152364 @default.
- W4315781674 hasConcept C55358776 @default.
- W4315781674 hasConcept C62649853 @default.
- W4315781674 hasConcept C66264921 @default.