Matches in SemOpenAlex for { <https://semopenalex.org/work/W4315781684> ?p ?o ?g. }
- W4315781684 endingPage "100" @default.
- W4315781684 startingPage "100" @default.
- W4315781684 abstract "Pharmacological strategies to lower the viral load among patients suffering from severe diseases were researched in great detail during the SARS-CoV-2 outbreak. The viral protease Mpro (3CLpro) is necessary for viral replication and is among the main therapeutic targets proposed, thus far. To stop the pandemic from spreading, researchers are working to find more effective Mpro inhibitors against SARS-CoV-2. The 33.8 kDa Mpro protease of SARS-CoV-2, being a nonhuman homologue, has the possibility of being utilized as a therapeutic target against coronaviruses. To develop drug-like compounds capable of preventing the replication of SARS-main CoV-2's protease (Mpro), a computer-aided drug design (CADD) approach is extremely viable. Using MOE, structure-based virtual screening (SBVS) of in-house and commercial databases was carried out using SARS-CoV-2 proteins. The most promising hits obtained during virtual screening (VS) were put through molecular docking with the help of MOE. The virtual screening yielded 3/5 hits (in-house database) and 56/66 hits (commercial databases). Finally, 3/5 hits (in-house database), 3/5 hits (ZINC database), and 2/7 hits (ChemBridge database) were chosen as potent lead compounds using various scaffolds due to their considerable binding affinity with Mpro protein. The outcomes of SBVS were then validated using an analysis based on molecular dynamics simulation (MDS). The complexes' stability was tested using MDS and post-MDS. The most promising candidates were found to exhibit a high capacity for fitting into the protein-binding pocket and interacting with the catalytic dyad. At least one of the scaffolds selected will possibly prove useful for future research. However, further scientific confirmation in the form of preclinical and clinical research is required before implementation." @default.
- W4315781684 created "2023-01-13" @default.
- W4315781684 creator A5001520528 @default.
- W4315781684 creator A5029767755 @default.
- W4315781684 creator A5031735641 @default.
- W4315781684 creator A5034186530 @default.
- W4315781684 creator A5060134251 @default.
- W4315781684 creator A5066528366 @default.
- W4315781684 creator A5069616412 @default.
- W4315781684 creator A5077801134 @default.
- W4315781684 creator A5080517102 @default.
- W4315781684 date "2023-01-11" @default.
- W4315781684 modified "2023-10-10" @default.
- W4315781684 title "In-Silico Lead Druggable Compounds Identification against SARS COVID-19 Main Protease Target from In-House, Chembridge and Zinc Databases by Structure-Based Virtual Screening, Molecular Docking and Molecular Dynamics Simulations" @default.
- W4315781684 cites W1761822939 @default.
- W4315781684 cites W1968984443 @default.
- W4315781684 cites W1993577573 @default.
- W4315781684 cites W2004822259 @default.
- W4315781684 cites W2008659592 @default.
- W4315781684 cites W2009447971 @default.
- W4315781684 cites W2013093113 @default.
- W4315781684 cites W2025116694 @default.
- W4315781684 cites W2037535298 @default.
- W4315781684 cites W2069506489 @default.
- W4315781684 cites W2106140689 @default.
- W4315781684 cites W2135732933 @default.
- W4315781684 cites W2255243349 @default.
- W4315781684 cites W2296081283 @default.
- W4315781684 cites W2404280981 @default.
- W4315781684 cites W2903899730 @default.
- W4315781684 cites W2912503031 @default.
- W4315781684 cites W2969728037 @default.
- W4315781684 cites W2995352634 @default.
- W4315781684 cites W2999409984 @default.
- W4315781684 cites W2999512142 @default.
- W4315781684 cites W3003217347 @default.
- W4315781684 cites W3004280078 @default.
- W4315781684 cites W3005111420 @default.
- W4315781684 cites W3008142620 @default.
- W4315781684 cites W3012440244 @default.
- W4315781684 cites W3022435472 @default.
- W4315781684 cites W3023126697 @default.
- W4315781684 cites W3031641561 @default.
- W4315781684 cites W3035011439 @default.
- W4315781684 cites W3043431476 @default.
- W4315781684 cites W3093768302 @default.
- W4315781684 cites W3147610910 @default.
- W4315781684 cites W3206460657 @default.
- W4315781684 cites W3215083575 @default.
- W4315781684 cites W4214747759 @default.
- W4315781684 cites W4220968997 @default.
- W4315781684 cites W4223494503 @default.
- W4315781684 cites W4248107770 @default.
- W4315781684 cites W4300002057 @default.
- W4315781684 cites W4303621964 @default.
- W4315781684 cites W4303958834 @default.
- W4315781684 doi "https://doi.org/10.3390/bioengineering10010100" @default.
- W4315781684 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36671672" @default.
- W4315781684 hasPublicationYear "2023" @default.
- W4315781684 type Work @default.
- W4315781684 citedByCount "5" @default.
- W4315781684 countsByYear W43157816842023 @default.
- W4315781684 crossrefType "journal-article" @default.
- W4315781684 hasAuthorship W4315781684A5001520528 @default.
- W4315781684 hasAuthorship W4315781684A5029767755 @default.
- W4315781684 hasAuthorship W4315781684A5031735641 @default.
- W4315781684 hasAuthorship W4315781684A5034186530 @default.
- W4315781684 hasAuthorship W4315781684A5060134251 @default.
- W4315781684 hasAuthorship W4315781684A5066528366 @default.
- W4315781684 hasAuthorship W4315781684A5069616412 @default.
- W4315781684 hasAuthorship W4315781684A5077801134 @default.
- W4315781684 hasAuthorship W4315781684A5080517102 @default.
- W4315781684 hasBestOaLocation W43157816841 @default.
- W4315781684 hasConcept C103697762 @default.
- W4315781684 hasConcept C104317684 @default.
- W4315781684 hasConcept C10679952 @default.
- W4315781684 hasConcept C159110408 @default.
- W4315781684 hasConcept C181199279 @default.
- W4315781684 hasConcept C2775905019 @default.
- W4315781684 hasConcept C2776714187 @default.
- W4315781684 hasConcept C41008148 @default.
- W4315781684 hasConcept C41685203 @default.
- W4315781684 hasConcept C54355233 @default.
- W4315781684 hasConcept C55493867 @default.
- W4315781684 hasConcept C60644358 @default.
- W4315781684 hasConcept C70721500 @default.
- W4315781684 hasConcept C71924100 @default.
- W4315781684 hasConcept C74187038 @default.
- W4315781684 hasConcept C77088390 @default.
- W4315781684 hasConcept C86803240 @default.
- W4315781684 hasConceptScore W4315781684C103697762 @default.
- W4315781684 hasConceptScore W4315781684C104317684 @default.
- W4315781684 hasConceptScore W4315781684C10679952 @default.
- W4315781684 hasConceptScore W4315781684C159110408 @default.
- W4315781684 hasConceptScore W4315781684C181199279 @default.
- W4315781684 hasConceptScore W4315781684C2775905019 @default.
- W4315781684 hasConceptScore W4315781684C2776714187 @default.
- W4315781684 hasConceptScore W4315781684C41008148 @default.