Matches in SemOpenAlex for { <https://semopenalex.org/work/W4315783485> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4315783485 abstract "Cybercriminals use malware or malicious software to cause harm to the victim. Malware is a continuous source of concern for security teams. Malware analysis techniques, including static, dynamic, hybrid, and memory analysis, are used to comprehend the behavior and its impact. The aforementioned malware analysis techniques require domain knowledge to extract the artifacts from suspicious files, which is not always possible. A visualization approach, in which malware files are transformed into images, is one of the recently used techniques by researchers for malware detection and classification. In this paper, we apply four widely used techniques based on the visualization using a new dataset of memory dump files of malware families and benign classes. These visualization techniques include a histogram of oriented gradients (HOG) with multilayer perceptron (MLP), convolutional neural network (CNN) with pretrained weight of visual geometry group 16 (VGG), Transfer learning of VGG16 with support vector machine (SVM), and integration of global image descriptor (GIST) and HOG with SVM. Among the selected techniques, CNN with a pretrained weight of VGG16 outperformed the other techniques in terms of accuracy, precision, recall, and f1-score. Apart from the performance metrics, the results of selected techniques are also analyzed in terms of computational cost and memory utilization." @default.
- W4315783485 created "2023-01-13" @default.
- W4315783485 creator A5009660202 @default.
- W4315783485 creator A5016101516 @default.
- W4315783485 creator A5077993621 @default.
- W4315783485 date "2022-11-29" @default.
- W4315783485 modified "2023-10-16" @default.
- W4315783485 title "Performance comparison of visualization-based malware detection and classification techniques" @default.
- W4315783485 cites W2215444025 @default.
- W4315783485 cites W2520494781 @default.
- W4315783485 cites W2795033129 @default.
- W4315783485 cites W2796681025 @default.
- W4315783485 cites W2887921593 @default.
- W4315783485 cites W2894211014 @default.
- W4315783485 cites W2894477425 @default.
- W4315783485 cites W2895892359 @default.
- W4315783485 cites W2901004617 @default.
- W4315783485 cites W2950754826 @default.
- W4315783485 cites W2972262359 @default.
- W4315783485 cites W3003302059 @default.
- W4315783485 cites W3003663951 @default.
- W4315783485 cites W3027431742 @default.
- W4315783485 cites W3118316519 @default.
- W4315783485 cites W3118382796 @default.
- W4315783485 cites W3132223643 @default.
- W4315783485 cites W3210235841 @default.
- W4315783485 cites W4308121386 @default.
- W4315783485 doi "https://doi.org/10.1109/icet56601.2022.10004652" @default.
- W4315783485 hasPublicationYear "2022" @default.
- W4315783485 type Work @default.
- W4315783485 citedByCount "0" @default.
- W4315783485 crossrefType "proceedings-article" @default.
- W4315783485 hasAuthorship W4315783485A5009660202 @default.
- W4315783485 hasAuthorship W4315783485A5016101516 @default.
- W4315783485 hasAuthorship W4315783485A5077993621 @default.
- W4315783485 hasConcept C124101348 @default.
- W4315783485 hasConcept C153180895 @default.
- W4315783485 hasConcept C154945302 @default.
- W4315783485 hasConcept C172367668 @default.
- W4315783485 hasConcept C36464697 @default.
- W4315783485 hasConcept C38652104 @default.
- W4315783485 hasConcept C41008148 @default.
- W4315783485 hasConcept C541664917 @default.
- W4315783485 hasConceptScore W4315783485C124101348 @default.
- W4315783485 hasConceptScore W4315783485C153180895 @default.
- W4315783485 hasConceptScore W4315783485C154945302 @default.
- W4315783485 hasConceptScore W4315783485C172367668 @default.
- W4315783485 hasConceptScore W4315783485C36464697 @default.
- W4315783485 hasConceptScore W4315783485C38652104 @default.
- W4315783485 hasConceptScore W4315783485C41008148 @default.
- W4315783485 hasConceptScore W4315783485C541664917 @default.
- W4315783485 hasFunder F4320325210 @default.
- W4315783485 hasLocation W43157834851 @default.
- W4315783485 hasOpenAccess W4315783485 @default.
- W4315783485 hasPrimaryLocation W43157834851 @default.
- W4315783485 hasRelatedWork W1493022169 @default.
- W4315783485 hasRelatedWork W1604110270 @default.
- W4315783485 hasRelatedWork W2043263066 @default.
- W4315783485 hasRelatedWork W2076199097 @default.
- W4315783485 hasRelatedWork W2078899744 @default.
- W4315783485 hasRelatedWork W2245166612 @default.
- W4315783485 hasRelatedWork W2327281093 @default.
- W4315783485 hasRelatedWork W2373264576 @default.
- W4315783485 hasRelatedWork W2525150146 @default.
- W4315783485 hasRelatedWork W2953976309 @default.
- W4315783485 isParatext "false" @default.
- W4315783485 isRetracted "false" @default.
- W4315783485 workType "article" @default.