Matches in SemOpenAlex for { <https://semopenalex.org/work/W4315783979> ?p ?o ?g. }
- W4315783979 endingPage "3999" @default.
- W4315783979 startingPage "3990" @default.
- W4315783979 abstract "Rolling bearing is one of the core components of modern machinery and is widely used in rotating machinery. It is of great significance to judge the running state and predict the remaining useful life (RUL) of bearings for preventive maintenance of rotating machinery. Due to the complexity of the fault mechanism, traditional prediction methods cannot clearly describe the relationship between local and global temporal features in bearing vibration signals. To overcome this shortcoming, a novel convolution network based on temporal attention fusion (TAF) mechanism, i.e., TAF convolutional network (TAFCN), is proposed in this article. Its core part is a TAF module, which consists of a separable temporal self-attention (STSA) submodule and a competitive TAF (CTAF) submodule. In particular, the STSA submodule focuses on the internal correlation of local temporal features, and the CTAF submodule aims to enhance the extraction and fusion of global temporal features across different levels. The comparison results based on XJTU-SY datasets show that the TAF module is robust to signal disturbance and noise, and the prediction accuracy of TAFCN for the RUL of rolling bearings is also better than some existing models." @default.
- W4315783979 created "2023-01-13" @default.
- W4315783979 creator A5018945216 @default.
- W4315783979 creator A5020641940 @default.
- W4315783979 creator A5024385262 @default.
- W4315783979 creator A5056780326 @default.
- W4315783979 creator A5085244737 @default.
- W4315783979 date "2023-02-15" @default.
- W4315783979 modified "2023-10-14" @default.
- W4315783979 title "A Novel Convolution Network Based on Temporal Attention Fusion Mechanism for Remaining Useful Life Prediction of Rolling Bearings" @default.
- W4315783979 cites W2133832971 @default.
- W4315783979 cites W2415594836 @default.
- W4315783979 cites W2580840020 @default.
- W4315783979 cites W2903936867 @default.
- W4315783979 cites W2904460913 @default.
- W4315783979 cites W2919115771 @default.
- W4315783979 cites W2938406107 @default.
- W4315783979 cites W2945413072 @default.
- W4315783979 cites W2962850830 @default.
- W4315783979 cites W2972641997 @default.
- W4315783979 cites W2972829688 @default.
- W4315783979 cites W2985380938 @default.
- W4315783979 cites W2989638106 @default.
- W4315783979 cites W2990543002 @default.
- W4315783979 cites W2994902374 @default.
- W4315783979 cites W2999342951 @default.
- W4315783979 cites W3008819860 @default.
- W4315783979 cites W3017805480 @default.
- W4315783979 cites W3037511795 @default.
- W4315783979 cites W3037944824 @default.
- W4315783979 cites W3037999295 @default.
- W4315783979 cites W3093879950 @default.
- W4315783979 cites W3094105523 @default.
- W4315783979 cites W3099673664 @default.
- W4315783979 cites W3117446604 @default.
- W4315783979 cites W3132028723 @default.
- W4315783979 cites W3138700964 @default.
- W4315783979 cites W3147206993 @default.
- W4315783979 cites W3168771715 @default.
- W4315783979 cites W3178034484 @default.
- W4315783979 cites W3200131984 @default.
- W4315783979 cites W3214433557 @default.
- W4315783979 cites W3217712418 @default.
- W4315783979 cites W4200192600 @default.
- W4315783979 cites W4200216090 @default.
- W4315783979 cites W4211058054 @default.
- W4315783979 cites W4212861124 @default.
- W4315783979 cites W4214634090 @default.
- W4315783979 cites W4225116077 @default.
- W4315783979 cites W4225709684 @default.
- W4315783979 cites W4226067624 @default.
- W4315783979 cites W4285195618 @default.
- W4315783979 cites W4289823422 @default.
- W4315783979 doi "https://doi.org/10.1109/jsen.2023.3234980" @default.
- W4315783979 hasPublicationYear "2023" @default.
- W4315783979 type Work @default.
- W4315783979 citedByCount "2" @default.
- W4315783979 countsByYear W43157839792023 @default.
- W4315783979 crossrefType "journal-article" @default.
- W4315783979 hasAuthorship W4315783979A5018945216 @default.
- W4315783979 hasAuthorship W4315783979A5020641940 @default.
- W4315783979 hasAuthorship W4315783979A5024385262 @default.
- W4315783979 hasAuthorship W4315783979A5056780326 @default.
- W4315783979 hasAuthorship W4315783979A5085244737 @default.
- W4315783979 hasConcept C111472728 @default.
- W4315783979 hasConcept C115961682 @default.
- W4315783979 hasConcept C121332964 @default.
- W4315783979 hasConcept C127313418 @default.
- W4315783979 hasConcept C127413603 @default.
- W4315783979 hasConcept C138885662 @default.
- W4315783979 hasConcept C153180895 @default.
- W4315783979 hasConcept C154945302 @default.
- W4315783979 hasConcept C158525013 @default.
- W4315783979 hasConcept C165205528 @default.
- W4315783979 hasConcept C175551986 @default.
- W4315783979 hasConcept C198394728 @default.
- W4315783979 hasConcept C199978012 @default.
- W4315783979 hasConcept C24890656 @default.
- W4315783979 hasConcept C41008148 @default.
- W4315783979 hasConcept C41895202 @default.
- W4315783979 hasConcept C45347329 @default.
- W4315783979 hasConcept C50644808 @default.
- W4315783979 hasConcept C52622490 @default.
- W4315783979 hasConcept C81363708 @default.
- W4315783979 hasConcept C89611455 @default.
- W4315783979 hasConcept C99498987 @default.
- W4315783979 hasConceptScore W4315783979C111472728 @default.
- W4315783979 hasConceptScore W4315783979C115961682 @default.
- W4315783979 hasConceptScore W4315783979C121332964 @default.
- W4315783979 hasConceptScore W4315783979C127313418 @default.
- W4315783979 hasConceptScore W4315783979C127413603 @default.
- W4315783979 hasConceptScore W4315783979C138885662 @default.
- W4315783979 hasConceptScore W4315783979C153180895 @default.
- W4315783979 hasConceptScore W4315783979C154945302 @default.
- W4315783979 hasConceptScore W4315783979C158525013 @default.
- W4315783979 hasConceptScore W4315783979C165205528 @default.
- W4315783979 hasConceptScore W4315783979C175551986 @default.
- W4315783979 hasConceptScore W4315783979C198394728 @default.