Matches in SemOpenAlex for { <https://semopenalex.org/work/W4315786553> ?p ?o ?g. }
- W4315786553 endingPage "882" @default.
- W4315786553 startingPage "882" @default.
- W4315786553 abstract "Sensor arrays are currently attracting the interest of researchers due to their potential of overcoming the limitations of single sensors regarding selectivity, required by specific applications. Among the materials used to develop sensor arrays, graphene has not been so far extensively exploited, despite its remarkable sensing capability. Here we present the development of a graphene-based sensor array prepared by dropcasting nanostructure and nanocomposite graphene solution on interdigitated substrates, with the aim to investigate the capability of the array to discriminate several gases related to specific applications, including environmental monitoring, food quality tracking, and breathomics. This goal is achieved in two steps: at first the sensing properties of the array have been assessed through ammonia exposures, drawing the calibration curves, estimating the limit of detection, which has been found in the ppb range for all sensors, and investigating stability and sensitivity; then, after performing exposures to acetone, ethanol, 2-propanol, sodium hypochlorite, and water vapour, chemometric tools have been exploited to investigate the discrimination capability of the array, including principal component analysis (PCA), linear discriminant analysis (LDA), and Mahalanobis distance. PCA shows that the array was able to discriminate all the tested gases with an explained variance around 95%, while with an LDA approach the array can be trained to accurately recognize unknown gas contribution, with an accuracy higher than 94%." @default.
- W4315786553 created "2023-01-13" @default.
- W4315786553 creator A5001964447 @default.
- W4315786553 creator A5031808751 @default.
- W4315786553 creator A5065800016 @default.
- W4315786553 creator A5077257022 @default.
- W4315786553 date "2023-01-12" @default.
- W4315786553 modified "2023-10-05" @default.
- W4315786553 title "A Chemiresistor Sensor Array Based on Graphene Nanostructures: From the Detection of Ammonia and Possible Interfering VOCs to Chemometric Analysis" @default.
- W4315786553 cites W1611130327 @default.
- W4315786553 cites W1908483906 @default.
- W4315786553 cites W1929170399 @default.
- W4315786553 cites W1966760661 @default.
- W4315786553 cites W1968237824 @default.
- W4315786553 cites W1969637192 @default.
- W4315786553 cites W1970333295 @default.
- W4315786553 cites W1980516378 @default.
- W4315786553 cites W1991024809 @default.
- W4315786553 cites W1995098220 @default.
- W4315786553 cites W1995109133 @default.
- W4315786553 cites W1997900450 @default.
- W4315786553 cites W2008068390 @default.
- W4315786553 cites W2027099355 @default.
- W4315786553 cites W2031159754 @default.
- W4315786553 cites W2034385722 @default.
- W4315786553 cites W2041858177 @default.
- W4315786553 cites W2061514815 @default.
- W4315786553 cites W2063696441 @default.
- W4315786553 cites W2068454741 @default.
- W4315786553 cites W2074880343 @default.
- W4315786553 cites W2075148335 @default.
- W4315786553 cites W2081449506 @default.
- W4315786553 cites W2088321686 @default.
- W4315786553 cites W2105024153 @default.
- W4315786553 cites W2123121603 @default.
- W4315786553 cites W2152441166 @default.
- W4315786553 cites W2158526734 @default.
- W4315786553 cites W2163120960 @default.
- W4315786553 cites W2188145203 @default.
- W4315786553 cites W2284579279 @default.
- W4315786553 cites W2516874596 @default.
- W4315786553 cites W2523673312 @default.
- W4315786553 cites W2532411821 @default.
- W4315786553 cites W2567471398 @default.
- W4315786553 cites W2599795654 @default.
- W4315786553 cites W2613250061 @default.
- W4315786553 cites W2621206707 @default.
- W4315786553 cites W2734497810 @default.
- W4315786553 cites W2736259563 @default.
- W4315786553 cites W2763148304 @default.
- W4315786553 cites W2767121472 @default.
- W4315786553 cites W2767369267 @default.
- W4315786553 cites W2803095380 @default.
- W4315786553 cites W2854295798 @default.
- W4315786553 cites W2891195344 @default.
- W4315786553 cites W2891377011 @default.
- W4315786553 cites W2894063412 @default.
- W4315786553 cites W2898447338 @default.
- W4315786553 cites W2904069861 @default.
- W4315786553 cites W2909056152 @default.
- W4315786553 cites W2913633124 @default.
- W4315786553 cites W2915047632 @default.
- W4315786553 cites W2923840490 @default.
- W4315786553 cites W2935294674 @default.
- W4315786553 cites W2968178320 @default.
- W4315786553 cites W2973298071 @default.
- W4315786553 cites W2997932799 @default.
- W4315786553 cites W3006802383 @default.
- W4315786553 cites W3016141300 @default.
- W4315786553 cites W3022876843 @default.
- W4315786553 cites W3024193603 @default.
- W4315786553 cites W3026588625 @default.
- W4315786553 cites W3031773298 @default.
- W4315786553 cites W3081244641 @default.
- W4315786553 cites W3091624313 @default.
- W4315786553 cites W3094720681 @default.
- W4315786553 cites W3097078421 @default.
- W4315786553 cites W3108813103 @default.
- W4315786553 cites W3109385342 @default.
- W4315786553 cites W3112646351 @default.
- W4315786553 cites W3122378781 @default.
- W4315786553 cites W3130062730 @default.
- W4315786553 cites W3138399559 @default.
- W4315786553 cites W3162061754 @default.
- W4315786553 cites W3172147237 @default.
- W4315786553 cites W3174316352 @default.
- W4315786553 cites W3200719801 @default.
- W4315786553 cites W3208042281 @default.
- W4315786553 cites W4213138616 @default.
- W4315786553 cites W4283313760 @default.
- W4315786553 cites W4293769782 @default.
- W4315786553 cites W4308770207 @default.
- W4315786553 cites W4308873561 @default.
- W4315786553 cites W4313475322 @default.
- W4315786553 doi "https://doi.org/10.3390/s23020882" @default.
- W4315786553 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36679682" @default.
- W4315786553 hasPublicationYear "2023" @default.
- W4315786553 type Work @default.