Matches in SemOpenAlex for { <https://semopenalex.org/work/W4315880904> ?p ?o ?g. }
- W4315880904 abstract "The growing application of artificial intelligence (AI) in healthcare has brought technological breakthroughs to traditional diagnosis and treatment, but it is accompanied by many risks and challenges. These adverse effects are also seen as ethical issues and affect trustworthiness in medical AI and need to be managed through identification, prognosis and monitoring.We adopted a multidisciplinary approach and summarized five subjects that influence the trustworthiness of medical AI: data quality, algorithmic bias, opacity, safety and security, and responsibility attribution, and discussed these factors from the perspectives of technology, law, and healthcare stakeholders and institutions. The ethical framework of ethical values-ethical principles-ethical norms is used to propose corresponding ethical governance countermeasures for trustworthy medical AI from the ethical, legal, and regulatory aspects.Medical data are primarily unstructured, lacking uniform and standardized annotation, and data quality will directly affect the quality of medical AI algorithm models. Algorithmic bias can affect AI clinical predictions and exacerbate health disparities. The opacity of algorithms affects patients' and doctors' trust in medical AI, and algorithmic errors or security vulnerabilities can pose significant risks and harm to patients. The involvement of medical AI in clinical practices may threaten doctors 'and patients' autonomy and dignity. When accidents occur with medical AI, the responsibility attribution is not clear. All these factors affect people's trust in medical AI.In order to make medical AI trustworthy, at the ethical level, the ethical value orientation of promoting human health should first and foremost be considered as the top-level design. At the legal level, current medical AI does not have moral status and humans remain the duty bearers. At the regulatory level, strengthening data quality management, improving algorithm transparency and traceability to reduce algorithm bias, and regulating and reviewing the whole process of the AI industry to control risks are proposed. It is also necessary to encourage multiple parties to discuss and assess AI risks and social impacts, and to strengthen international cooperation and communication." @default.
- W4315880904 created "2023-01-13" @default.
- W4315880904 creator A5073501391 @default.
- W4315880904 creator A5085688031 @default.
- W4315880904 date "2023-01-13" @default.
- W4315880904 modified "2023-10-15" @default.
- W4315880904 title "Ethics and governance of trustworthy medical artificial intelligence" @default.
- W4315880904 cites W1720752806 @default.
- W4315880904 cites W189803326 @default.
- W4315880904 cites W1963851457 @default.
- W4315880904 cites W1983138480 @default.
- W4315880904 cites W1984044747 @default.
- W4315880904 cites W2023571823 @default.
- W4315880904 cites W2037182281 @default.
- W4315880904 cites W2038481714 @default.
- W4315880904 cites W2062808044 @default.
- W4315880904 cites W2081590306 @default.
- W4315880904 cites W2135046866 @default.
- W4315880904 cites W2142764402 @default.
- W4315880904 cites W2260558829 @default.
- W4315880904 cites W2336246624 @default.
- W4315880904 cites W2532214630 @default.
- W4315880904 cites W2553338792 @default.
- W4315880904 cites W2581082771 @default.
- W4315880904 cites W2605512411 @default.
- W4315880904 cites W2760062370 @default.
- W4315880904 cites W2766447205 @default.
- W4315880904 cites W2767123365 @default.
- W4315880904 cites W2768899399 @default.
- W4315880904 cites W2781122472 @default.
- W4315880904 cites W2789970635 @default.
- W4315880904 cites W2792145227 @default.
- W4315880904 cites W2886281300 @default.
- W4315880904 cites W2886283492 @default.
- W4315880904 cites W2891503716 @default.
- W4315880904 cites W2896245505 @default.
- W4315880904 cites W2899560923 @default.
- W4315880904 cites W2899768131 @default.
- W4315880904 cites W2899881299 @default.
- W4315880904 cites W2901194671 @default.
- W4315880904 cites W2901226889 @default.
- W4315880904 cites W2910707576 @default.
- W4315880904 cites W2915292867 @default.
- W4315880904 cites W2916559661 @default.
- W4315880904 cites W2921498258 @default.
- W4315880904 cites W2921763762 @default.
- W4315880904 cites W2924551358 @default.
- W4315880904 cites W2944988415 @default.
- W4315880904 cites W2947996805 @default.
- W4315880904 cites W2951934944 @default.
- W4315880904 cites W2968620080 @default.
- W4315880904 cites W2979279941 @default.
- W4315880904 cites W2981646383 @default.
- W4315880904 cites W2981869278 @default.
- W4315880904 cites W2982580298 @default.
- W4315880904 cites W2989512989 @default.
- W4315880904 cites W2991542819 @default.
- W4315880904 cites W2999828647 @default.
- W4315880904 cites W3012598084 @default.
- W4315880904 cites W3096120964 @default.
- W4315880904 cites W3121368818 @default.
- W4315880904 cites W3122548859 @default.
- W4315880904 cites W3122898490 @default.
- W4315880904 cites W3135353559 @default.
- W4315880904 cites W3173139055 @default.
- W4315880904 cites W4200571635 @default.
- W4315880904 cites W4210759702 @default.
- W4315880904 cites W4232036072 @default.
- W4315880904 cites W4297799122 @default.
- W4315880904 doi "https://doi.org/10.1186/s12911-023-02103-9" @default.
- W4315880904 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36639799" @default.
- W4315880904 hasPublicationYear "2023" @default.
- W4315880904 type Work @default.
- W4315880904 citedByCount "21" @default.
- W4315880904 countsByYear W43158809042023 @default.
- W4315880904 crossrefType "journal-article" @default.
- W4315880904 hasAuthorship W4315880904A5073501391 @default.
- W4315880904 hasAuthorship W4315880904A5085688031 @default.
- W4315880904 hasBestOaLocation W43158809041 @default.
- W4315880904 hasConcept C10138342 @default.
- W4315880904 hasConcept C108827166 @default.
- W4315880904 hasConcept C127413603 @default.
- W4315880904 hasConcept C144133560 @default.
- W4315880904 hasConcept C15744967 @default.
- W4315880904 hasConcept C160735492 @default.
- W4315880904 hasConcept C17744445 @default.
- W4315880904 hasConcept C199539241 @default.
- W4315880904 hasConcept C2776035688 @default.
- W4315880904 hasConcept C2777363581 @default.
- W4315880904 hasConcept C39389867 @default.
- W4315880904 hasConcept C39549134 @default.
- W4315880904 hasConcept C41008148 @default.
- W4315880904 hasConcept C46312422 @default.
- W4315880904 hasConcept C55587333 @default.
- W4315880904 hasConcept C65414064 @default.
- W4315880904 hasConcept C71924100 @default.
- W4315880904 hasConcept C77805123 @default.
- W4315880904 hasConceptScore W4315880904C10138342 @default.
- W4315880904 hasConceptScore W4315880904C108827166 @default.
- W4315880904 hasConceptScore W4315880904C127413603 @default.