Matches in SemOpenAlex for { <https://semopenalex.org/work/W4315926951> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4315926951 endingPage "165" @default.
- W4315926951 startingPage "158" @default.
- W4315926951 abstract "Abstract Objective Despite improvements in diagnostic methods, acromegaly is still a late-diagnosed disease. In this study, it was aimed to automatically recognize acromegaly disease from facial images by using deep learning methods and to facilitate the detection of the disease. Design Cross-sectional, single-centre study Methods The study included 77 acromegaly (52.56 ± 11.74, 34 males/43 females) patients and 71 healthy controls (48.47 ± 8.91, 39 males/32 females), considering gender and age compatibility. At the time of the photography, 56/77 (73%) of the acromegaly patients were in remission. Normalized images were obtained by scaling, aligning, and cropping video frames. Three architectures named ResNet50, DenseNet121, and InceptionV3 were used for the transfer learning-based convolutional neural network (CNN) model developed to classify face images as “Healthy” or “Acromegaly”. Additionally, we trained and integrated these CNN machine learning methods to create an Ensemble Method (EM) for facial detection of acromegaly. Results The positive predictive values obtained for acromegaly with the ResNet50, DenseNet121, InceptionV3, and EM were calculated as 0.958, 0.965, 0.962, and 0.997, respectively. The average sensitivity, specificity, precision, and correlation coefficient values calculated for each of the ResNet50, DenseNet121, and InceptionV3 models are quite close. On the other hand, EM outperformed these three CNN architectures and provided the best overall performance in terms of sensitivity, specificity, accuracy, and precision as 0.997, 0.997, 0.997, and 0.998, respectively. Conclusions The present study provided evidence that the proposed AcroEnsemble Model might detect acromegaly from facial images with high performance. This highlights that artificial intelligence programs are promising methods for detecting acromegaly in the future." @default.
- W4315926951 created "2023-01-14" @default.
- W4315926951 creator A5017313098 @default.
- W4315926951 creator A5033251437 @default.
- W4315926951 creator A5033842889 @default.
- W4315926951 creator A5048687888 @default.
- W4315926951 creator A5054790740 @default.
- W4315926951 creator A5055617576 @default.
- W4315926951 creator A5058625740 @default.
- W4315926951 creator A5061935802 @default.
- W4315926951 creator A5076600421 @default.
- W4315926951 creator A5085413037 @default.
- W4315926951 creator A5090228255 @default.
- W4315926951 date "2023-01-10" @default.
- W4315926951 modified "2023-10-14" @default.
- W4315926951 title "Real-time detection of acromegaly from facial images with artificial intelligence" @default.
- W4315926951 cites W1985554391 @default.
- W4315926951 cites W1992196441 @default.
- W4315926951 cites W2029803616 @default.
- W4315926951 cites W2045171823 @default.
- W4315926951 cites W2067299067 @default.
- W4315926951 cites W2110992178 @default.
- W4315926951 cites W2165331022 @default.
- W4315926951 cites W2530847956 @default.
- W4315926951 cites W2546538091 @default.
- W4315926951 cites W2599694922 @default.
- W4315926951 cites W2737796269 @default.
- W4315926951 cites W2774101154 @default.
- W4315926951 cites W2903470658 @default.
- W4315926951 cites W3013443566 @default.
- W4315926951 cites W3046198083 @default.
- W4315926951 cites W3097920880 @default.
- W4315926951 cites W4210782277 @default.
- W4315926951 cites W4211191881 @default.
- W4315926951 doi "https://doi.org/10.1093/ejendo/lvad005" @default.
- W4315926951 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36747333" @default.
- W4315926951 hasPublicationYear "2023" @default.
- W4315926951 type Work @default.
- W4315926951 citedByCount "1" @default.
- W4315926951 countsByYear W43159269512023 @default.
- W4315926951 crossrefType "journal-article" @default.
- W4315926951 hasAuthorship W4315926951A5017313098 @default.
- W4315926951 hasAuthorship W4315926951A5033251437 @default.
- W4315926951 hasAuthorship W4315926951A5033842889 @default.
- W4315926951 hasAuthorship W4315926951A5048687888 @default.
- W4315926951 hasAuthorship W4315926951A5054790740 @default.
- W4315926951 hasAuthorship W4315926951A5055617576 @default.
- W4315926951 hasAuthorship W4315926951A5058625740 @default.
- W4315926951 hasAuthorship W4315926951A5061935802 @default.
- W4315926951 hasAuthorship W4315926951A5076600421 @default.
- W4315926951 hasAuthorship W4315926951A5085413037 @default.
- W4315926951 hasAuthorship W4315926951A5090228255 @default.
- W4315926951 hasBestOaLocation W43159269511 @default.
- W4315926951 hasConcept C126322002 @default.
- W4315926951 hasConcept C153180895 @default.
- W4315926951 hasConcept C154945302 @default.
- W4315926951 hasConcept C2777433750 @default.
- W4315926951 hasConcept C2984496839 @default.
- W4315926951 hasConcept C41008148 @default.
- W4315926951 hasConcept C71315377 @default.
- W4315926951 hasConcept C71924100 @default.
- W4315926951 hasConcept C81363708 @default.
- W4315926951 hasConceptScore W4315926951C126322002 @default.
- W4315926951 hasConceptScore W4315926951C153180895 @default.
- W4315926951 hasConceptScore W4315926951C154945302 @default.
- W4315926951 hasConceptScore W4315926951C2777433750 @default.
- W4315926951 hasConceptScore W4315926951C2984496839 @default.
- W4315926951 hasConceptScore W4315926951C41008148 @default.
- W4315926951 hasConceptScore W4315926951C71315377 @default.
- W4315926951 hasConceptScore W4315926951C71924100 @default.
- W4315926951 hasConceptScore W4315926951C81363708 @default.
- W4315926951 hasIssue "1" @default.
- W4315926951 hasLocation W43159269511 @default.
- W4315926951 hasLocation W43159269512 @default.
- W4315926951 hasOpenAccess W4315926951 @default.
- W4315926951 hasPrimaryLocation W43159269511 @default.
- W4315926951 hasRelatedWork W2175746458 @default.
- W4315926951 hasRelatedWork W2732542196 @default.
- W4315926951 hasRelatedWork W2738221750 @default.
- W4315926951 hasRelatedWork W2760085659 @default.
- W4315926951 hasRelatedWork W2767651786 @default.
- W4315926951 hasRelatedWork W2883200793 @default.
- W4315926951 hasRelatedWork W2912288872 @default.
- W4315926951 hasRelatedWork W2940661641 @default.
- W4315926951 hasRelatedWork W3012978760 @default.
- W4315926951 hasRelatedWork W3093612317 @default.
- W4315926951 hasVolume "188" @default.
- W4315926951 isParatext "false" @default.
- W4315926951 isRetracted "false" @default.
- W4315926951 workType "article" @default.