Matches in SemOpenAlex for { <https://semopenalex.org/work/W4316012183> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4316012183 abstract "Diabetic Retinopathy (DR) becomes the crucial disease in different disease groups and millions of people suffering with it every year rapidly. However, the conventional methods are failed to classify the DR in early stage due to complex architecture of eye fundus image. Therefore, this article is focused on implementation of deep learning convolutional neural network (DLCNN) based artificial intelligence approach for classifying multiple stages of DR. Initially, the hybrid features are extracted from IDRID dataset by using Local Binary Pattern (LBP), Local Gaussian Difference Extrema Pattern (LGDEP), and Histogram of Oriented Gradient (HOG) descriptors. Further, Linear Discriminant Analysis (LDA) is used to select the inter disease and intra disease dependent based optimal features. Then, DLCNN model is trained with these features for classification of DR grades for each test retinal image. The simulation results show that proposed DR classification results shows better subjective and object performance as compared to conventional machine learning and deep learning methods." @default.
- W4316012183 created "2023-01-14" @default.
- W4316012183 creator A5020546860 @default.
- W4316012183 creator A5032025494 @default.
- W4316012183 date "2022-12-10" @default.
- W4316012183 modified "2023-09-27" @default.
- W4316012183 title "Artificial Intelligence System for Classification of Diabetic Retinopathy" @default.
- W4316012183 cites W2421889207 @default.
- W4316012183 cites W2765370814 @default.
- W4316012183 cites W2784652774 @default.
- W4316012183 cites W2790576426 @default.
- W4316012183 cites W2793119512 @default.
- W4316012183 cites W2807189427 @default.
- W4316012183 cites W2809160962 @default.
- W4316012183 cites W2811181298 @default.
- W4316012183 cites W2841732318 @default.
- W4316012183 cites W2884292375 @default.
- W4316012183 cites W2887399540 @default.
- W4316012183 cites W2887465456 @default.
- W4316012183 cites W2898936434 @default.
- W4316012183 cites W2901768681 @default.
- W4316012183 cites W2914467864 @default.
- W4316012183 cites W2917714716 @default.
- W4316012183 cites W2949061630 @default.
- W4316012183 cites W2963298074 @default.
- W4316012183 cites W2974844314 @default.
- W4316012183 cites W3101507774 @default.
- W4316012183 cites W3102501754 @default.
- W4316012183 cites W4210346992 @default.
- W4316012183 cites W4212984122 @default.
- W4316012183 doi "https://doi.org/10.1109/stcr55312.2022.10009372" @default.
- W4316012183 hasPublicationYear "2022" @default.
- W4316012183 type Work @default.
- W4316012183 citedByCount "0" @default.
- W4316012183 crossrefType "proceedings-article" @default.
- W4316012183 hasAuthorship W4316012183A5020546860 @default.
- W4316012183 hasAuthorship W4316012183A5032025494 @default.
- W4316012183 hasConcept C108583219 @default.
- W4316012183 hasConcept C115961682 @default.
- W4316012183 hasConcept C118487528 @default.
- W4316012183 hasConcept C12267149 @default.
- W4316012183 hasConcept C134018914 @default.
- W4316012183 hasConcept C134306372 @default.
- W4316012183 hasConcept C153180895 @default.
- W4316012183 hasConcept C154945302 @default.
- W4316012183 hasConcept C186633575 @default.
- W4316012183 hasConcept C2776391266 @default.
- W4316012183 hasConcept C2779829184 @default.
- W4316012183 hasConcept C33923547 @default.
- W4316012183 hasConcept C41008148 @default.
- W4316012183 hasConcept C53533937 @default.
- W4316012183 hasConcept C555293320 @default.
- W4316012183 hasConcept C66905080 @default.
- W4316012183 hasConcept C69738355 @default.
- W4316012183 hasConcept C71924100 @default.
- W4316012183 hasConcept C75294576 @default.
- W4316012183 hasConcept C81363708 @default.
- W4316012183 hasConcept C87335442 @default.
- W4316012183 hasConceptScore W4316012183C108583219 @default.
- W4316012183 hasConceptScore W4316012183C115961682 @default.
- W4316012183 hasConceptScore W4316012183C118487528 @default.
- W4316012183 hasConceptScore W4316012183C12267149 @default.
- W4316012183 hasConceptScore W4316012183C134018914 @default.
- W4316012183 hasConceptScore W4316012183C134306372 @default.
- W4316012183 hasConceptScore W4316012183C153180895 @default.
- W4316012183 hasConceptScore W4316012183C154945302 @default.
- W4316012183 hasConceptScore W4316012183C186633575 @default.
- W4316012183 hasConceptScore W4316012183C2776391266 @default.
- W4316012183 hasConceptScore W4316012183C2779829184 @default.
- W4316012183 hasConceptScore W4316012183C33923547 @default.
- W4316012183 hasConceptScore W4316012183C41008148 @default.
- W4316012183 hasConceptScore W4316012183C53533937 @default.
- W4316012183 hasConceptScore W4316012183C555293320 @default.
- W4316012183 hasConceptScore W4316012183C66905080 @default.
- W4316012183 hasConceptScore W4316012183C69738355 @default.
- W4316012183 hasConceptScore W4316012183C71924100 @default.
- W4316012183 hasConceptScore W4316012183C75294576 @default.
- W4316012183 hasConceptScore W4316012183C81363708 @default.
- W4316012183 hasConceptScore W4316012183C87335442 @default.
- W4316012183 hasLocation W43160121831 @default.
- W4316012183 hasOpenAccess W4316012183 @default.
- W4316012183 hasPrimaryLocation W43160121831 @default.
- W4316012183 hasRelatedWork W2087874231 @default.
- W4316012183 hasRelatedWork W2424805633 @default.
- W4316012183 hasRelatedWork W2537156416 @default.
- W4316012183 hasRelatedWork W2732542196 @default.
- W4316012183 hasRelatedWork W2962984400 @default.
- W4316012183 hasRelatedWork W3004377704 @default.
- W4316012183 hasRelatedWork W3019149440 @default.
- W4316012183 hasRelatedWork W3156786002 @default.
- W4316012183 hasRelatedWork W3175878955 @default.
- W4316012183 hasRelatedWork W564581980 @default.
- W4316012183 isParatext "false" @default.
- W4316012183 isRetracted "false" @default.
- W4316012183 workType "article" @default.