Matches in SemOpenAlex for { <https://semopenalex.org/work/W4316012225> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4316012225 abstract "The high public interest in cryptocurrencies is increasing over time. Cryptocurrencies are gaining worldwide attention because of their unique and unpredictable nature. Nowadays, cryptocurrencies can be used for various things, one of which is for investment. In investing in cryptocurrencies, various analyzes are needed to consider trade flows. One way to analyze it is by analyzing public sentiment which consists of positive and negative sentiments. However, there has been no previous research on the use of machine learning approaches and feature selection in sentiment analysis of Twitter tweets and retweets. The research was conducted by analyzing public sentiment using a machine learning algorithm, namely the Support Vector Machine. In addition to using the Support Vector Machine, Chi-square is also used in feature selection to help reduce noise in a sentence. Retweets will considerably improve sentiment label classification. The performance of sentiment analysis can be improved across the board by at least 91%. The sentiment analysis findings from this study are positive. This implies that a trader can take cryptocurrencies like Bitcoin, Ethereum, and Ripple into account while deciding on the type of investment." @default.
- W4316012225 created "2023-01-14" @default.
- W4316012225 creator A5022600391 @default.
- W4316012225 creator A5035150205 @default.
- W4316012225 creator A5049215472 @default.
- W4316012225 date "2022-12-08" @default.
- W4316012225 modified "2023-10-03" @default.
- W4316012225 title "Sentiment Analysis on Cryptocurrency Based on Tweets and Retweets Using Support Vector Machines and Chi-Square" @default.
- W4316012225 cites W2064594469 @default.
- W4316012225 cites W2085947874 @default.
- W4316012225 cites W2525200860 @default.
- W4316012225 cites W2803393527 @default.
- W4316012225 cites W2886348599 @default.
- W4316012225 cites W2902016849 @default.
- W4316012225 cites W2902435881 @default.
- W4316012225 cites W2944815653 @default.
- W4316012225 cites W2977348857 @default.
- W4316012225 cites W2996372523 @default.
- W4316012225 cites W3010027878 @default.
- W4316012225 cites W3024333932 @default.
- W4316012225 cites W3042352239 @default.
- W4316012225 cites W3096450928 @default.
- W4316012225 cites W3115448404 @default.
- W4316012225 cites W3123764276 @default.
- W4316012225 cites W3137089603 @default.
- W4316012225 cites W3160488344 @default.
- W4316012225 cites W3172225542 @default.
- W4316012225 cites W3175952612 @default.
- W4316012225 cites W3202186028 @default.
- W4316012225 cites W4200130456 @default.
- W4316012225 doi "https://doi.org/10.1109/icic56845.2022.10006895" @default.
- W4316012225 hasPublicationYear "2022" @default.
- W4316012225 type Work @default.
- W4316012225 citedByCount "1" @default.
- W4316012225 crossrefType "proceedings-article" @default.
- W4316012225 hasAuthorship W4316012225A5022600391 @default.
- W4316012225 hasAuthorship W4316012225A5035150205 @default.
- W4316012225 hasAuthorship W4316012225A5049215472 @default.
- W4316012225 hasConcept C119857082 @default.
- W4316012225 hasConcept C12267149 @default.
- W4316012225 hasConcept C124101348 @default.
- W4316012225 hasConcept C138885662 @default.
- W4316012225 hasConcept C148483581 @default.
- W4316012225 hasConcept C154945302 @default.
- W4316012225 hasConcept C17744445 @default.
- W4316012225 hasConcept C180706569 @default.
- W4316012225 hasConcept C199539241 @default.
- W4316012225 hasConcept C27548731 @default.
- W4316012225 hasConcept C2776401178 @default.
- W4316012225 hasConcept C2777530160 @default.
- W4316012225 hasConcept C38652104 @default.
- W4316012225 hasConcept C41008148 @default.
- W4316012225 hasConcept C41895202 @default.
- W4316012225 hasConcept C66402592 @default.
- W4316012225 hasConcept C81917197 @default.
- W4316012225 hasConcept C94625758 @default.
- W4316012225 hasConceptScore W4316012225C119857082 @default.
- W4316012225 hasConceptScore W4316012225C12267149 @default.
- W4316012225 hasConceptScore W4316012225C124101348 @default.
- W4316012225 hasConceptScore W4316012225C138885662 @default.
- W4316012225 hasConceptScore W4316012225C148483581 @default.
- W4316012225 hasConceptScore W4316012225C154945302 @default.
- W4316012225 hasConceptScore W4316012225C17744445 @default.
- W4316012225 hasConceptScore W4316012225C180706569 @default.
- W4316012225 hasConceptScore W4316012225C199539241 @default.
- W4316012225 hasConceptScore W4316012225C27548731 @default.
- W4316012225 hasConceptScore W4316012225C2776401178 @default.
- W4316012225 hasConceptScore W4316012225C2777530160 @default.
- W4316012225 hasConceptScore W4316012225C38652104 @default.
- W4316012225 hasConceptScore W4316012225C41008148 @default.
- W4316012225 hasConceptScore W4316012225C41895202 @default.
- W4316012225 hasConceptScore W4316012225C66402592 @default.
- W4316012225 hasConceptScore W4316012225C81917197 @default.
- W4316012225 hasConceptScore W4316012225C94625758 @default.
- W4316012225 hasLocation W43160122251 @default.
- W4316012225 hasOpenAccess W4316012225 @default.
- W4316012225 hasPrimaryLocation W43160122251 @default.
- W4316012225 hasRelatedWork W1996541855 @default.
- W4316012225 hasRelatedWork W2001541796 @default.
- W4316012225 hasRelatedWork W2374776489 @default.
- W4316012225 hasRelatedWork W3192794374 @default.
- W4316012225 hasRelatedWork W3195168932 @default.
- W4316012225 hasRelatedWork W4225694783 @default.
- W4316012225 hasRelatedWork W4288767684 @default.
- W4316012225 hasRelatedWork W4293525103 @default.
- W4316012225 hasRelatedWork W4362613237 @default.
- W4316012225 hasRelatedWork W2345184372 @default.
- W4316012225 isParatext "false" @default.
- W4316012225 isRetracted "false" @default.
- W4316012225 workType "article" @default.