Matches in SemOpenAlex for { <https://semopenalex.org/work/W4316039214> ?p ?o ?g. }
- W4316039214 endingPage "915" @default.
- W4316039214 startingPage "915" @default.
- W4316039214 abstract "Advances in signal processing and machine learning have expedited electroencephalogram (EEG)-based emotion recognition research, and numerous EEG signal features have been investigated to detect or characterize human emotions. However, most studies in this area have used relatively small monocentric data and focused on a limited range of EEG features, making it difficult to compare the utility of different sets of EEG features for emotion recognition. This study addressed that by comparing the classification accuracy (performance) of a comprehensive range of EEG feature sets for identifying emotional states, in terms of valence and arousal. The classification accuracy of five EEG feature sets were investigated, including statistical features, fractal dimension (FD), Hjorth parameters, higher order spectra (HOS), and those derived using wavelet analysis. Performance was evaluated using two classifier methods, support vector machine (SVM) and classification and regression tree (CART), across five independent and publicly available datasets linking EEG to emotional states: MAHNOB-HCI, DEAP, SEED, AMIGOS, and DREAMER. The FD-CART feature-classification method attained the best mean classification accuracy for valence (85.06%) and arousal (84.55%) across the five datasets. The stability of these findings across the five different datasets also indicate that FD features derived from EEG data are reliable for emotion recognition. The results may lead to the possible development of an online feature extraction framework, thereby enabling the development of an EEG-based emotion recognition system in real time." @default.
- W4316039214 created "2023-01-14" @default.
- W4316039214 creator A5064175550 @default.
- W4316039214 creator A5067085341 @default.
- W4316039214 creator A5073566752 @default.
- W4316039214 creator A5081952940 @default.
- W4316039214 creator A5086799630 @default.
- W4316039214 date "2023-01-12" @default.
- W4316039214 modified "2023-09-29" @default.
- W4316039214 title "Comprehensive Analysis of Feature Extraction Methods for Emotion Recognition from Multichannel EEG Recordings" @default.
- W4316039214 cites W110731996 @default.
- W4316039214 cites W1947251450 @default.
- W4316039214 cites W1994233698 @default.
- W4316039214 cites W2002055708 @default.
- W4316039214 cites W2040171374 @default.
- W4316039214 cites W2045468728 @default.
- W4316039214 cites W2049304438 @default.
- W4316039214 cites W2072062726 @default.
- W4316039214 cites W2073951293 @default.
- W4316039214 cites W2081420711 @default.
- W4316039214 cites W2094561108 @default.
- W4316039214 cites W2097360557 @default.
- W4316039214 cites W2122037214 @default.
- W4316039214 cites W2122098299 @default.
- W4316039214 cites W2134050473 @default.
- W4316039214 cites W2139564752 @default.
- W4316039214 cites W2151069331 @default.
- W4316039214 cites W2160410052 @default.
- W4316039214 cites W2162137602 @default.
- W4316039214 cites W2165857685 @default.
- W4316039214 cites W2225768848 @default.
- W4316039214 cites W2232827647 @default.
- W4316039214 cites W2559749850 @default.
- W4316039214 cites W2599124244 @default.
- W4316039214 cites W2740113900 @default.
- W4316039214 cites W2790814155 @default.
- W4316039214 cites W2792157494 @default.
- W4316039214 cites W2792191740 @default.
- W4316039214 cites W2799657112 @default.
- W4316039214 cites W2806925798 @default.
- W4316039214 cites W2810302362 @default.
- W4316039214 cites W2810418809 @default.
- W4316039214 cites W2900796970 @default.
- W4316039214 cites W2913846632 @default.
- W4316039214 cites W2924944963 @default.
- W4316039214 cites W2946526173 @default.
- W4316039214 cites W3003207095 @default.
- W4316039214 cites W3014558148 @default.
- W4316039214 cites W3025334394 @default.
- W4316039214 cites W3043308633 @default.
- W4316039214 cites W3045794674 @default.
- W4316039214 cites W3082349500 @default.
- W4316039214 cites W3135861599 @default.
- W4316039214 cites W3139270985 @default.
- W4316039214 cites W3203998598 @default.
- W4316039214 cites W4223933234 @default.
- W4316039214 cites W4291636964 @default.
- W4316039214 doi "https://doi.org/10.3390/s23020915" @default.
- W4316039214 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36679710" @default.
- W4316039214 hasPublicationYear "2023" @default.
- W4316039214 type Work @default.
- W4316039214 citedByCount "5" @default.
- W4316039214 countsByYear W43160392142023 @default.
- W4316039214 crossrefType "journal-article" @default.
- W4316039214 hasAuthorship W4316039214A5064175550 @default.
- W4316039214 hasAuthorship W4316039214A5067085341 @default.
- W4316039214 hasAuthorship W4316039214A5073566752 @default.
- W4316039214 hasAuthorship W4316039214A5081952940 @default.
- W4316039214 hasAuthorship W4316039214A5086799630 @default.
- W4316039214 hasBestOaLocation W43160392141 @default.
- W4316039214 hasConcept C118552586 @default.
- W4316039214 hasConcept C121332964 @default.
- W4316039214 hasConcept C12267149 @default.
- W4316039214 hasConcept C153180895 @default.
- W4316039214 hasConcept C154945302 @default.
- W4316039214 hasConcept C15744967 @default.
- W4316039214 hasConcept C168900304 @default.
- W4316039214 hasConcept C169258074 @default.
- W4316039214 hasConcept C169760540 @default.
- W4316039214 hasConcept C206310091 @default.
- W4316039214 hasConcept C28490314 @default.
- W4316039214 hasConcept C36951298 @default.
- W4316039214 hasConcept C41008148 @default.
- W4316039214 hasConcept C522805319 @default.
- W4316039214 hasConcept C52622490 @default.
- W4316039214 hasConcept C62520636 @default.
- W4316039214 hasConcept C84525736 @default.
- W4316039214 hasConceptScore W4316039214C118552586 @default.
- W4316039214 hasConceptScore W4316039214C121332964 @default.
- W4316039214 hasConceptScore W4316039214C12267149 @default.
- W4316039214 hasConceptScore W4316039214C153180895 @default.
- W4316039214 hasConceptScore W4316039214C154945302 @default.
- W4316039214 hasConceptScore W4316039214C15744967 @default.
- W4316039214 hasConceptScore W4316039214C168900304 @default.
- W4316039214 hasConceptScore W4316039214C169258074 @default.
- W4316039214 hasConceptScore W4316039214C169760540 @default.
- W4316039214 hasConceptScore W4316039214C206310091 @default.
- W4316039214 hasConceptScore W4316039214C28490314 @default.