Matches in SemOpenAlex for { <https://semopenalex.org/work/W4316087281> ?p ?o ?g. }
- W4316087281 abstract "Wireless Sensor Networks (WSNs) are usually employed to address the data transfer using sensors nodes associated with dynamic environment. However, this data transmission gets significantly challenged when huge data need to be transferred via WSN. Numerous researchers had proposed various Data Aggregation (DA) schemes to resolve this issue, however, due to service quality and security factors it persisted to challenge the Quality-of-Service (QoS) delivered using WSN. The present review had discussed the concept and the process involved in DA. Further, the paper mainly surveyed the research published in the last decade for DA in WSN using Machine Learning (ML) approaches. The basic architecture involved in data transfer using nodes in while performing DA is discussed followed by the list of various ML approaches that have been implemented in the recent past for DA. The review is based on the articles published in various authenticated journals. Finally, the analysis is summarized to lay foundation of further research aimed at the enhancement of performance of data transmission via DA in WSN using ML approaches." @default.
- W4316087281 created "2023-01-14" @default.
- W4316087281 creator A5042080057 @default.
- W4316087281 creator A5049152383 @default.
- W4316087281 creator A5065095284 @default.
- W4316087281 date "2022-11-18" @default.
- W4316087281 modified "2023-10-16" @default.
- W4316087281 title "A Systematic Review of Data Aggregation using Machine Learning Techniques" @default.
- W4316087281 cites W1986023921 @default.
- W4316087281 cites W1989401189 @default.
- W4316087281 cites W1994542009 @default.
- W4316087281 cites W2010219032 @default.
- W4316087281 cites W2021076597 @default.
- W4316087281 cites W2024003517 @default.
- W4316087281 cites W2061288034 @default.
- W4316087281 cites W2086826630 @default.
- W4316087281 cites W2096088715 @default.
- W4316087281 cites W2119248057 @default.
- W4316087281 cites W2136422427 @default.
- W4316087281 cites W2155492251 @default.
- W4316087281 cites W2162062753 @default.
- W4316087281 cites W2165501671 @default.
- W4316087281 cites W2171821354 @default.
- W4316087281 cites W2299550784 @default.
- W4316087281 cites W2415974304 @default.
- W4316087281 cites W2510731241 @default.
- W4316087281 cites W2605300330 @default.
- W4316087281 cites W2741340996 @default.
- W4316087281 cites W2754711490 @default.
- W4316087281 cites W2799924450 @default.
- W4316087281 cites W2805736865 @default.
- W4316087281 cites W2884777714 @default.
- W4316087281 cites W2889722070 @default.
- W4316087281 cites W2895244261 @default.
- W4316087281 cites W2912717507 @default.
- W4316087281 cites W2923278775 @default.
- W4316087281 cites W2953682745 @default.
- W4316087281 cites W2963036739 @default.
- W4316087281 cites W2993029234 @default.
- W4316087281 cites W3009763129 @default.
- W4316087281 cites W3009812138 @default.
- W4316087281 cites W3087907189 @default.
- W4316087281 cites W3098133185 @default.
- W4316087281 cites W3100857292 @default.
- W4316087281 cites W3118457085 @default.
- W4316087281 cites W3121794515 @default.
- W4316087281 cites W3122035567 @default.
- W4316087281 cites W4225983066 @default.
- W4316087281 cites W4229455697 @default.
- W4316087281 cites W4231948096 @default.
- W4316087281 cites W4246870610 @default.
- W4316087281 cites W4283322122 @default.
- W4316087281 cites W4285494618 @default.
- W4316087281 doi "https://doi.org/10.1109/ican56228.2022.10007131" @default.
- W4316087281 hasPublicationYear "2022" @default.
- W4316087281 type Work @default.
- W4316087281 citedByCount "0" @default.
- W4316087281 crossrefType "proceedings-article" @default.
- W4316087281 hasAuthorship W4316087281A5042080057 @default.
- W4316087281 hasAuthorship W4316087281A5049152383 @default.
- W4316087281 hasAuthorship W4316087281A5065095284 @default.
- W4316087281 hasConcept C111919701 @default.
- W4316087281 hasConcept C119857082 @default.
- W4316087281 hasConcept C120314980 @default.
- W4316087281 hasConcept C124101348 @default.
- W4316087281 hasConcept C150899416 @default.
- W4316087281 hasConcept C24590314 @default.
- W4316087281 hasConcept C31258907 @default.
- W4316087281 hasConcept C41008148 @default.
- W4316087281 hasConcept C5119721 @default.
- W4316087281 hasConcept C557945733 @default.
- W4316087281 hasConcept C761482 @default.
- W4316087281 hasConcept C76155785 @default.
- W4316087281 hasConcept C82578977 @default.
- W4316087281 hasConcept C98045186 @default.
- W4316087281 hasConceptScore W4316087281C111919701 @default.
- W4316087281 hasConceptScore W4316087281C119857082 @default.
- W4316087281 hasConceptScore W4316087281C120314980 @default.
- W4316087281 hasConceptScore W4316087281C124101348 @default.
- W4316087281 hasConceptScore W4316087281C150899416 @default.
- W4316087281 hasConceptScore W4316087281C24590314 @default.
- W4316087281 hasConceptScore W4316087281C31258907 @default.
- W4316087281 hasConceptScore W4316087281C41008148 @default.
- W4316087281 hasConceptScore W4316087281C5119721 @default.
- W4316087281 hasConceptScore W4316087281C557945733 @default.
- W4316087281 hasConceptScore W4316087281C761482 @default.
- W4316087281 hasConceptScore W4316087281C76155785 @default.
- W4316087281 hasConceptScore W4316087281C82578977 @default.
- W4316087281 hasConceptScore W4316087281C98045186 @default.
- W4316087281 hasLocation W43160872811 @default.
- W4316087281 hasOpenAccess W4316087281 @default.
- W4316087281 hasPrimaryLocation W43160872811 @default.
- W4316087281 hasRelatedWork W1751052531 @default.
- W4316087281 hasRelatedWork W1990868986 @default.
- W4316087281 hasRelatedWork W1997415650 @default.
- W4316087281 hasRelatedWork W2004904223 @default.
- W4316087281 hasRelatedWork W2130966263 @default.
- W4316087281 hasRelatedWork W2160544367 @default.
- W4316087281 hasRelatedWork W2359432571 @default.
- W4316087281 hasRelatedWork W2603622875 @default.