Matches in SemOpenAlex for { <https://semopenalex.org/work/W4316087310> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4316087310 abstract "Biometric authentication plays a vital role nowadays compared to password or token-based authentication. There are a lot of methods for biometric authentication algorithms that have been proposed but it can be said that the Deep Learning method give much more reliable and secure compared to other methods specifically Convolutional Neural Networks (CNN) for face recognition. Therefore, this paper will review the performance of top CNN architectures which are LeNet, AlexNet, VGGNet, GoogleNet, and ResNet by using the proposed face dataset of 7 celebrity classes where each class has 35 images that have been collected from Google Images. Data augmentation has been performed to increase the size of the dataset before it was fed into the CNN model. The experiment shows that AlexNet shows promising results compared to the other architectures on the proposed dataset." @default.
- W4316087310 created "2023-01-14" @default.
- W4316087310 creator A5002196275 @default.
- W4316087310 creator A5061216078 @default.
- W4316087310 creator A5078276852 @default.
- W4316087310 date "2022-07-28" @default.
- W4316087310 modified "2023-10-17" @default.
- W4316087310 title "Comparative Performance of Convolutional Neural Networks Architecture for Face Biometric Authentication System" @default.
- W4316087310 cites W2097117768 @default.
- W4316087310 cites W2194775991 @default.
- W4316087310 cites W2788522621 @default.
- W4316087310 cites W2899392160 @default.
- W4316087310 cites W2901051598 @default.
- W4316087310 cites W2904469115 @default.
- W4316087310 cites W2913613320 @default.
- W4316087310 cites W2922015385 @default.
- W4316087310 cites W2946122943 @default.
- W4316087310 cites W2946474676 @default.
- W4316087310 cites W2948019698 @default.
- W4316087310 cites W2953536431 @default.
- W4316087310 cites W2995683363 @default.
- W4316087310 cites W2996758248 @default.
- W4316087310 cites W2997059342 @default.
- W4316087310 cites W3005286570 @default.
- W4316087310 cites W3006450303 @default.
- W4316087310 cites W3017205434 @default.
- W4316087310 cites W3082335925 @default.
- W4316087310 cites W3088820816 @default.
- W4316087310 cites W3111030224 @default.
- W4316087310 cites W3117337440 @default.
- W4316087310 cites W3117461512 @default.
- W4316087310 cites W3130501658 @default.
- W4316087310 cites W3151173367 @default.
- W4316087310 cites W3159943573 @default.
- W4316087310 cites W3167202443 @default.
- W4316087310 cites W4210598935 @default.
- W4316087310 doi "https://doi.org/10.1109/icced56140.2022.10010512" @default.
- W4316087310 hasPublicationYear "2022" @default.
- W4316087310 type Work @default.
- W4316087310 citedByCount "0" @default.
- W4316087310 crossrefType "proceedings-article" @default.
- W4316087310 hasAuthorship W4316087310A5002196275 @default.
- W4316087310 hasAuthorship W4316087310A5061216078 @default.
- W4316087310 hasAuthorship W4316087310A5078276852 @default.
- W4316087310 hasConcept C108583219 @default.
- W4316087310 hasConcept C109297577 @default.
- W4316087310 hasConcept C119857082 @default.
- W4316087310 hasConcept C123657996 @default.
- W4316087310 hasConcept C124101348 @default.
- W4316087310 hasConcept C142362112 @default.
- W4316087310 hasConcept C144024400 @default.
- W4316087310 hasConcept C148417208 @default.
- W4316087310 hasConcept C153180895 @default.
- W4316087310 hasConcept C153349607 @default.
- W4316087310 hasConcept C154945302 @default.
- W4316087310 hasConcept C184297639 @default.
- W4316087310 hasConcept C2779304628 @default.
- W4316087310 hasConcept C31510193 @default.
- W4316087310 hasConcept C36289849 @default.
- W4316087310 hasConcept C38652104 @default.
- W4316087310 hasConcept C41008148 @default.
- W4316087310 hasConcept C48145219 @default.
- W4316087310 hasConcept C81363708 @default.
- W4316087310 hasConceptScore W4316087310C108583219 @default.
- W4316087310 hasConceptScore W4316087310C109297577 @default.
- W4316087310 hasConceptScore W4316087310C119857082 @default.
- W4316087310 hasConceptScore W4316087310C123657996 @default.
- W4316087310 hasConceptScore W4316087310C124101348 @default.
- W4316087310 hasConceptScore W4316087310C142362112 @default.
- W4316087310 hasConceptScore W4316087310C144024400 @default.
- W4316087310 hasConceptScore W4316087310C148417208 @default.
- W4316087310 hasConceptScore W4316087310C153180895 @default.
- W4316087310 hasConceptScore W4316087310C153349607 @default.
- W4316087310 hasConceptScore W4316087310C154945302 @default.
- W4316087310 hasConceptScore W4316087310C184297639 @default.
- W4316087310 hasConceptScore W4316087310C2779304628 @default.
- W4316087310 hasConceptScore W4316087310C31510193 @default.
- W4316087310 hasConceptScore W4316087310C36289849 @default.
- W4316087310 hasConceptScore W4316087310C38652104 @default.
- W4316087310 hasConceptScore W4316087310C41008148 @default.
- W4316087310 hasConceptScore W4316087310C48145219 @default.
- W4316087310 hasConceptScore W4316087310C81363708 @default.
- W4316087310 hasFunder F4320324298 @default.
- W4316087310 hasLocation W43160873101 @default.
- W4316087310 hasOpenAccess W4316087310 @default.
- W4316087310 hasPrimaryLocation W43160873101 @default.
- W4316087310 hasRelatedWork W1769662020 @default.
- W4316087310 hasRelatedWork W1893564517 @default.
- W4316087310 hasRelatedWork W2152726786 @default.
- W4316087310 hasRelatedWork W2248971496 @default.
- W4316087310 hasRelatedWork W2332868519 @default.
- W4316087310 hasRelatedWork W2538519825 @default.
- W4316087310 hasRelatedWork W2738221750 @default.
- W4316087310 hasRelatedWork W3000866861 @default.
- W4316087310 hasRelatedWork W3124066309 @default.
- W4316087310 hasRelatedWork W3141575850 @default.
- W4316087310 isParatext "false" @default.
- W4316087310 isRetracted "false" @default.
- W4316087310 workType "article" @default.