Matches in SemOpenAlex for { <https://semopenalex.org/work/W4316126749> ?p ?o ?g. }
- W4316126749 endingPage "119538" @default.
- W4316126749 startingPage "119538" @default.
- W4316126749 abstract "In recent years, depression has attracted worldwide attention because of its prevalence and great risk for suicide. Existing studies have confirmed the feasibility of depression detection on online social networks. Most existing researches extract the overall features of users during a specific period, which cannot reflect the dynamic variation of depression. Besides, the methods proposed in these studies are often lack in interpretability and fail to establish the correlation between features and depressive symptoms in clinical. To address these problems, we propose a novel framework for depression detection based on multivariate time series feature of user depressive symptoms. Firstly, we construct and publish a well-labeled dataset collecting from the most popular Chinese social network platform Sina Weibo. To the best of our knowledge, it is the first large-scale depression dataset with complete collection of user tweeting histories, which includes 3,711 depressed users and 19,526 non-depressed users. Then, we propose a feature extraction method that reveals user depression symptoms variation in the form of multivariate time series. Moreover, we explore the various influencing factors to the performance of our proposed framework. In addition, we also explore the contributions of features to classification as well as their interpretability and conduct feature ablations on them. The experimental results show that our proposed method is effective and the extracted multivariate time series feature can well characterize the depressive state variation of users. Finally, we analyze the shortcomings and challenges of this study. Our research work also provides methods and ideas for tracking and visualizing the development of depression among online social network users." @default.
- W4316126749 created "2023-01-14" @default.
- W4316126749 creator A5000867288 @default.
- W4316126749 creator A5049507423 @default.
- W4316126749 creator A5059803458 @default.
- W4316126749 creator A5061798904 @default.
- W4316126749 creator A5071487887 @default.
- W4316126749 date "2023-05-01" @default.
- W4316126749 modified "2023-09-27" @default.
- W4316126749 title "Depression detection on online social network with multivariate time series feature of user depressive symptoms" @default.
- W4316126749 cites W1975594555 @default.
- W4316126749 cites W2081249542 @default.
- W4316126749 cites W2094553285 @default.
- W4316126749 cites W2098956244 @default.
- W4316126749 cites W2148090135 @default.
- W4316126749 cites W2251420382 @default.
- W4316126749 cites W2252031683 @default.
- W4316126749 cites W2402700 @default.
- W4316126749 cites W2405042511 @default.
- W4316126749 cites W2464870181 @default.
- W4316126749 cites W2513928994 @default.
- W4316126749 cites W2584084362 @default.
- W4316126749 cites W263633337 @default.
- W4316126749 cites W2740966010 @default.
- W4316126749 cites W2783557991 @default.
- W4316126749 cites W2790353253 @default.
- W4316126749 cites W2795342689 @default.
- W4316126749 cites W2796361000 @default.
- W4316126749 cites W2801113291 @default.
- W4316126749 cites W2807710762 @default.
- W4316126749 cites W2892035503 @default.
- W4316126749 cites W2897583329 @default.
- W4316126749 cites W2898403482 @default.
- W4316126749 cites W2905587047 @default.
- W4316126749 cites W2908201961 @default.
- W4316126749 cites W2912720349 @default.
- W4316126749 cites W2914182082 @default.
- W4316126749 cites W2916226351 @default.
- W4316126749 cites W2946396904 @default.
- W4316126749 cites W2955382130 @default.
- W4316126749 cites W2962848499 @default.
- W4316126749 cites W2963261455 @default.
- W4316126749 cites W2964716450 @default.
- W4316126749 cites W2969075210 @default.
- W4316126749 cites W2973126618 @default.
- W4316126749 cites W3024856967 @default.
- W4316126749 cites W3033913896 @default.
- W4316126749 cites W3038427506 @default.
- W4316126749 cites W3083891030 @default.
- W4316126749 cites W3093744263 @default.
- W4316126749 cites W3101267588 @default.
- W4316126749 cites W3111058005 @default.
- W4316126749 cites W3119316801 @default.
- W4316126749 cites W3122544540 @default.
- W4316126749 cites W3127582740 @default.
- W4316126749 cites W3138276986 @default.
- W4316126749 cites W3146687796 @default.
- W4316126749 cites W3154095814 @default.
- W4316126749 cites W3154219437 @default.
- W4316126749 cites W3166185110 @default.
- W4316126749 cites W3169183224 @default.
- W4316126749 cites W3186145246 @default.
- W4316126749 cites W3190461479 @default.
- W4316126749 cites W3206733826 @default.
- W4316126749 cites W4287881512 @default.
- W4316126749 doi "https://doi.org/10.1016/j.eswa.2023.119538" @default.
- W4316126749 hasPublicationYear "2023" @default.
- W4316126749 type Work @default.
- W4316126749 citedByCount "2" @default.
- W4316126749 countsByYear W43161267492023 @default.
- W4316126749 crossrefType "journal-article" @default.
- W4316126749 hasAuthorship W4316126749A5000867288 @default.
- W4316126749 hasAuthorship W4316126749A5049507423 @default.
- W4316126749 hasAuthorship W4316126749A5059803458 @default.
- W4316126749 hasAuthorship W4316126749A5061798904 @default.
- W4316126749 hasAuthorship W4316126749A5071487887 @default.
- W4316126749 hasConcept C119857082 @default.
- W4316126749 hasConcept C124101348 @default.
- W4316126749 hasConcept C138885662 @default.
- W4316126749 hasConcept C139719470 @default.
- W4316126749 hasConcept C154945302 @default.
- W4316126749 hasConcept C161584116 @default.
- W4316126749 hasConcept C162324750 @default.
- W4316126749 hasConcept C199360897 @default.
- W4316126749 hasConcept C2776401178 @default.
- W4316126749 hasConcept C2776867660 @default.
- W4316126749 hasConcept C2780801425 @default.
- W4316126749 hasConcept C2781067378 @default.
- W4316126749 hasConcept C41008148 @default.
- W4316126749 hasConcept C41895202 @default.
- W4316126749 hasConceptScore W4316126749C119857082 @default.
- W4316126749 hasConceptScore W4316126749C124101348 @default.
- W4316126749 hasConceptScore W4316126749C138885662 @default.
- W4316126749 hasConceptScore W4316126749C139719470 @default.
- W4316126749 hasConceptScore W4316126749C154945302 @default.
- W4316126749 hasConceptScore W4316126749C161584116 @default.
- W4316126749 hasConceptScore W4316126749C162324750 @default.
- W4316126749 hasConceptScore W4316126749C199360897 @default.