Matches in SemOpenAlex for { <https://semopenalex.org/work/W4316171032> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4316171032 abstract "Higher cognitive process efforts may result in mental exhaustion, poor performance, and long-term health issues. An EEG-based methods for detecting a pilot's mental state have recently been created utilizing machine learning algorithms. EEG signals include a significant noise component, and these approaches either ignore this or use a random mix of preprocessing techniques to reduce noise. In the absence of uniform preprocessing procedures for cleaning, it would be impossible to compare the efficacy of machine learning models across research, even if they employ data obtained from the same experiment. In this study, we intend to evaluate how preprocessing approaches affect the performance of machine learning models. To do this, we concentrated on fundamental preprocessing techniques, such as a band-pass filter and independent component analysis. Using a publicly accessible actual physiological dataset gathered from a pilot who was exposed to a variety of mental events, we explore the influence of these preprocessing strategies on two machine learning models, SVMs and ANNs. Our findings indicate that the performance of the models is unaffected by preprocessing techniques. Moreover, our findings indicate that the models were able to anticipate the mental states from merged data collected in two environments. These findings demonstrate the necessity for a standardized methodological framework for the application of machine learning models to EEG inputs." @default.
- W4316171032 created "2023-01-15" @default.
- W4316171032 creator A5001931146 @default.
- W4316171032 creator A5043413211 @default.
- W4316171032 creator A5044599038 @default.
- W4316171032 date "2022-10-21" @default.
- W4316171032 modified "2023-09-26" @default.
- W4316171032 title "Miscellaneous EEG Preprocessing and Machine Learning for Pilots' Mental States Classification: Implications" @default.
- W4316171032 cites W1498436455 @default.
- W4316171032 cites W2068028305 @default.
- W4316171032 cites W2096597330 @default.
- W4316171032 cites W2169918686 @default.
- W4316171032 cites W2296172050 @default.
- W4316171032 cites W2792847701 @default.
- W4316171032 cites W2911256521 @default.
- W4316171032 cites W2941752771 @default.
- W4316171032 doi "https://doi.org/10.1145/3571560.3571565" @default.
- W4316171032 hasPublicationYear "2022" @default.
- W4316171032 type Work @default.
- W4316171032 citedByCount "2" @default.
- W4316171032 countsByYear W43161710322023 @default.
- W4316171032 crossrefType "proceedings-article" @default.
- W4316171032 hasAuthorship W4316171032A5001931146 @default.
- W4316171032 hasAuthorship W4316171032A5043413211 @default.
- W4316171032 hasAuthorship W4316171032A5044599038 @default.
- W4316171032 hasBestOaLocation W43161710322 @default.
- W4316171032 hasConcept C10551718 @default.
- W4316171032 hasConcept C115961682 @default.
- W4316171032 hasConcept C118552586 @default.
- W4316171032 hasConcept C119857082 @default.
- W4316171032 hasConcept C121332964 @default.
- W4316171032 hasConcept C12267149 @default.
- W4316171032 hasConcept C154945302 @default.
- W4316171032 hasConcept C15744967 @default.
- W4316171032 hasConcept C168167062 @default.
- W4316171032 hasConcept C34736171 @default.
- W4316171032 hasConcept C41008148 @default.
- W4316171032 hasConcept C522805319 @default.
- W4316171032 hasConcept C97355855 @default.
- W4316171032 hasConcept C99498987 @default.
- W4316171032 hasConceptScore W4316171032C10551718 @default.
- W4316171032 hasConceptScore W4316171032C115961682 @default.
- W4316171032 hasConceptScore W4316171032C118552586 @default.
- W4316171032 hasConceptScore W4316171032C119857082 @default.
- W4316171032 hasConceptScore W4316171032C121332964 @default.
- W4316171032 hasConceptScore W4316171032C12267149 @default.
- W4316171032 hasConceptScore W4316171032C154945302 @default.
- W4316171032 hasConceptScore W4316171032C15744967 @default.
- W4316171032 hasConceptScore W4316171032C168167062 @default.
- W4316171032 hasConceptScore W4316171032C34736171 @default.
- W4316171032 hasConceptScore W4316171032C41008148 @default.
- W4316171032 hasConceptScore W4316171032C522805319 @default.
- W4316171032 hasConceptScore W4316171032C97355855 @default.
- W4316171032 hasConceptScore W4316171032C99498987 @default.
- W4316171032 hasLocation W43161710321 @default.
- W4316171032 hasLocation W43161710322 @default.
- W4316171032 hasOpenAccess W4316171032 @default.
- W4316171032 hasPrimaryLocation W43161710321 @default.
- W4316171032 hasRelatedWork W1982165141 @default.
- W4316171032 hasRelatedWork W1986684738 @default.
- W4316171032 hasRelatedWork W1996541855 @default.
- W4316171032 hasRelatedWork W2123374135 @default.
- W4316171032 hasRelatedWork W2353262378 @default.
- W4316171032 hasRelatedWork W2382928216 @default.
- W4316171032 hasRelatedWork W2517235427 @default.
- W4316171032 hasRelatedWork W3133458873 @default.
- W4316171032 hasRelatedWork W3194157648 @default.
- W4316171032 hasRelatedWork W3195168932 @default.
- W4316171032 isParatext "false" @default.
- W4316171032 isRetracted "false" @default.
- W4316171032 workType "article" @default.