Matches in SemOpenAlex for { <https://semopenalex.org/work/W4316171046> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4316171046 abstract "The type of infrastructure and selection of its materials is one of the principal factors that must be considered. Due to its usual large quantifications on projects, it directly affects the environment and communities where it belonged. And collectively, the future of our world. As a strong, versatile, durable, sustainable, and environmentally beneficial material, bamboo and its derivatives are frequently utilized since the early times; the Philippines is fortunate to have an abundance of it across the country. The mechanical properties of one of the local R&D-prioritized and market-prominent bamboo specie, the Bambusa blumeana, are remarkable and well-known to be an excellent material for many structural elements. But to fully utilize it, reinforcements may be required, just like with any other ligneous and organic materials. Extensions in its compression strength along the grain may be accomplished from its 50.83 MPa average strength by confinement-reinforcing it with the promising, adaptable, and strong Carbon-fiber-reinforced polymer (CFRP). The Artificial Neural Network (ANN) model involving CFRP's confinement reinforcement thickness, edges that constitutes the compression area, moisture content, temperature, and density of Laminated Veneer Bamboo (LVB) was established using the Levenberg-Marquardt (LM) algorithm as the training algorithm (TA) and hyperbolic tangent sigmoid as the transfer function (TF). The relationship of the variables to the composite section's ultimate compressive strength, was indirectly proportional, except for density, and was further checked the influence using Garson's algorithm (GA). In addition, the results were verified using additional physical experimentation and Finite Element (FE) simulations, while the ANN model was compared to other prediction modelling techniques, by which the FE simulation proved to be an effective complement to the physical testing and the ANN prediction model performed the best. The results also reconfirmed other literature on engineered bamboo studies; and the failure of the CFRP-LVB composite section was found to be a combination of isolated partial failures of the LVB core as the cross-sections become larger, while full crushing was observed on smaller cross-sections." @default.
- W4316171046 created "2023-01-15" @default.
- W4316171046 creator A5060948753 @default.
- W4316171046 creator A5067583570 @default.
- W4316171046 date "2022-10-21" @default.
- W4316171046 modified "2023-09-27" @default.
- W4316171046 title "Carbon-Fiber-reinforced Polymer as Confinement Reinforcement to Maximize Compressive Strength of Engineered Bamboo: An Artificial Neural Network Model" @default.
- W4316171046 cites W3199474611 @default.
- W4316171046 cites W4285820667 @default.
- W4316171046 doi "https://doi.org/10.1145/3571560.3571569" @default.
- W4316171046 hasPublicationYear "2022" @default.
- W4316171046 type Work @default.
- W4316171046 citedByCount "0" @default.
- W4316171046 crossrefType "proceedings-article" @default.
- W4316171046 hasAuthorship W4316171046A5060948753 @default.
- W4316171046 hasAuthorship W4316171046A5067583570 @default.
- W4316171046 hasConcept C104779481 @default.
- W4316171046 hasConcept C127413603 @default.
- W4316171046 hasConcept C154945302 @default.
- W4316171046 hasConcept C159985019 @default.
- W4316171046 hasConcept C178405089 @default.
- W4316171046 hasConcept C180016635 @default.
- W4316171046 hasConcept C192562407 @default.
- W4316171046 hasConcept C2777178879 @default.
- W4316171046 hasConcept C2778704284 @default.
- W4316171046 hasConcept C30407753 @default.
- W4316171046 hasConcept C41008148 @default.
- W4316171046 hasConcept C50644808 @default.
- W4316171046 hasConcept C519885992 @default.
- W4316171046 hasConcept C66938386 @default.
- W4316171046 hasConcept C67203356 @default.
- W4316171046 hasConcept C81388566 @default.
- W4316171046 hasConceptScore W4316171046C104779481 @default.
- W4316171046 hasConceptScore W4316171046C127413603 @default.
- W4316171046 hasConceptScore W4316171046C154945302 @default.
- W4316171046 hasConceptScore W4316171046C159985019 @default.
- W4316171046 hasConceptScore W4316171046C178405089 @default.
- W4316171046 hasConceptScore W4316171046C180016635 @default.
- W4316171046 hasConceptScore W4316171046C192562407 @default.
- W4316171046 hasConceptScore W4316171046C2777178879 @default.
- W4316171046 hasConceptScore W4316171046C2778704284 @default.
- W4316171046 hasConceptScore W4316171046C30407753 @default.
- W4316171046 hasConceptScore W4316171046C41008148 @default.
- W4316171046 hasConceptScore W4316171046C50644808 @default.
- W4316171046 hasConceptScore W4316171046C519885992 @default.
- W4316171046 hasConceptScore W4316171046C66938386 @default.
- W4316171046 hasConceptScore W4316171046C67203356 @default.
- W4316171046 hasConceptScore W4316171046C81388566 @default.
- W4316171046 hasFunder F4320307252 @default.
- W4316171046 hasLocation W43161710461 @default.
- W4316171046 hasOpenAccess W4316171046 @default.
- W4316171046 hasPrimaryLocation W43161710461 @default.
- W4316171046 hasRelatedWork W1985900900 @default.
- W4316171046 hasRelatedWork W2074098271 @default.
- W4316171046 hasRelatedWork W2084073704 @default.
- W4316171046 hasRelatedWork W2093353759 @default.
- W4316171046 hasRelatedWork W2177563836 @default.
- W4316171046 hasRelatedWork W2277871979 @default.
- W4316171046 hasRelatedWork W2321181760 @default.
- W4316171046 hasRelatedWork W3142048519 @default.
- W4316171046 hasRelatedWork W4319233416 @default.
- W4316171046 hasRelatedWork W988595620 @default.
- W4316171046 isParatext "false" @default.
- W4316171046 isRetracted "false" @default.
- W4316171046 workType "article" @default.