Matches in SemOpenAlex for { <https://semopenalex.org/work/W4316171128> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4316171128 abstract "Emotion Recognition (ER) is an essential research area of natural language processing that can be applied to various fields. Texts in the fields of health care, marketing, and psychological counseling take various forms, and it is very important from a business point of view to find the emotions inherent in these texts. Recently, ER using text embeddings generated through a pre-trained language model with a large corpus was performed. However, since the embeddings are generalized to various domains, there is a limitation to directly using them for ER. In this study, to overcome the limitation, we propose a method that modifies generalized embeddings to emotional embeddings by performing proxy-based metric learning. In the proposed method, we fine-tuned the pre-trained language model by using proxy-anchor loss so that embeddings represent emotion appropriately. Previous studies only added linear classifiers. But, it is possible to capture emotional relationships between data by using proxy-based metric learning. In this study, we conducted ER experiments with benchmark datasets. The experimental result shows that the proposed method achieves better performance than the baseline and creates emotion-specific embeddings." @default.
- W4316171128 created "2023-01-15" @default.
- W4316171128 creator A5001757889 @default.
- W4316171128 creator A5032415335 @default.
- W4316171128 creator A5033400094 @default.
- W4316171128 creator A5037097853 @default.
- W4316171128 creator A5074494592 @default.
- W4316171128 date "2022-10-21" @default.
- W4316171128 modified "2023-09-27" @default.
- W4316171128 title "Proxy-based Metric Learning for Emotion Recognition" @default.
- W4316171128 cites W2088252378 @default.
- W4316171128 cites W2157364932 @default.
- W4316171128 cites W2250539671 @default.
- W4316171128 cites W2605102252 @default.
- W4316171128 cites W2964300796 @default.
- W4316171128 cites W2967729586 @default.
- W4316171128 cites W2970431814 @default.
- W4316171128 cites W2982392870 @default.
- W4316171128 cites W2991234496 @default.
- W4316171128 cites W3011574394 @default.
- W4316171128 cites W3034202663 @default.
- W4316171128 cites W3184324824 @default.
- W4316171128 doi "https://doi.org/10.1145/3571560.3571578" @default.
- W4316171128 hasPublicationYear "2022" @default.
- W4316171128 type Work @default.
- W4316171128 citedByCount "0" @default.
- W4316171128 crossrefType "proceedings-article" @default.
- W4316171128 hasAuthorship W4316171128A5001757889 @default.
- W4316171128 hasAuthorship W4316171128A5032415335 @default.
- W4316171128 hasAuthorship W4316171128A5033400094 @default.
- W4316171128 hasAuthorship W4316171128A5037097853 @default.
- W4316171128 hasAuthorship W4316171128A5074494592 @default.
- W4316171128 hasConcept C119857082 @default.
- W4316171128 hasConcept C13280743 @default.
- W4316171128 hasConcept C154945302 @default.
- W4316171128 hasConcept C162324750 @default.
- W4316171128 hasConcept C176217482 @default.
- W4316171128 hasConcept C185798385 @default.
- W4316171128 hasConcept C204321447 @default.
- W4316171128 hasConcept C205649164 @default.
- W4316171128 hasConcept C21547014 @default.
- W4316171128 hasConcept C2777438025 @default.
- W4316171128 hasConcept C2780148112 @default.
- W4316171128 hasConcept C41008148 @default.
- W4316171128 hasConceptScore W4316171128C119857082 @default.
- W4316171128 hasConceptScore W4316171128C13280743 @default.
- W4316171128 hasConceptScore W4316171128C154945302 @default.
- W4316171128 hasConceptScore W4316171128C162324750 @default.
- W4316171128 hasConceptScore W4316171128C176217482 @default.
- W4316171128 hasConceptScore W4316171128C185798385 @default.
- W4316171128 hasConceptScore W4316171128C204321447 @default.
- W4316171128 hasConceptScore W4316171128C205649164 @default.
- W4316171128 hasConceptScore W4316171128C21547014 @default.
- W4316171128 hasConceptScore W4316171128C2777438025 @default.
- W4316171128 hasConceptScore W4316171128C2780148112 @default.
- W4316171128 hasConceptScore W4316171128C41008148 @default.
- W4316171128 hasLocation W43161711281 @default.
- W4316171128 hasOpenAccess W4316171128 @default.
- W4316171128 hasPrimaryLocation W43161711281 @default.
- W4316171128 hasRelatedWork W112744582 @default.
- W4316171128 hasRelatedWork W1485630101 @default.
- W4316171128 hasRelatedWork W2039826537 @default.
- W4316171128 hasRelatedWork W2498017833 @default.
- W4316171128 hasRelatedWork W2961085424 @default.
- W4316171128 hasRelatedWork W2966858528 @default.
- W4316171128 hasRelatedWork W3107474891 @default.
- W4316171128 hasRelatedWork W3188648403 @default.
- W4316171128 hasRelatedWork W4221155488 @default.
- W4316171128 hasRelatedWork W4360764167 @default.
- W4316171128 isParatext "false" @default.
- W4316171128 isRetracted "false" @default.
- W4316171128 workType "article" @default.