Matches in SemOpenAlex for { <https://semopenalex.org/work/W4316253709> ?p ?o ?g. }
- W4316253709 endingPage "106932" @default.
- W4316253709 startingPage "106932" @default.
- W4316253709 abstract "Understanding the abundance variability of clay minerals, as fundamental soil components, will help the users to improve land management and address concerns over climate change and soil fertility. Therefore, this investigation aimed to model the abundance and spatial distribution of clay types, including palygorskite, illite, and kaolinite, and identify the most significant variables affecting their variability using a digital soil mapping (DSM) approach in Darab district, southern Iran. Multiple Linear Regression (MLR) and Random Forest (RF) techniques were applied to link clay types and environmental attributes that were obtained from a Landsat-8 operational land imager (OLI) and digital elevation model (DEM). A ten-fold cross-validation approach was applied to calibrate and validate the models, and 50 bootstrap models were used to quantify the prediction uncertainty. The models accuracy was defined by the coefficient of determination (R2), root mean square error (RMSE), and the ratio of performance to the interquartile range (RPIQ). Findings denoted that the RF model better predicts the abundance and variability of clay minerals in the study area (R2 = 0.56, 0.47, and 0.48, RMSE = 5.3, 1.91 and 0.63 % and RPIQ = 2.82, 3.28 and 2.62 for palygorskite, illite and kaolinite, respectively). Based on the feature selection analysis, topographic covariates and soil properties determined palygorskite and kaolinite content variations, while for illite, only soil properties could explain the spatial distribution. Besides, the RF produced a lower uncertainty for palygorskite compared to the other clay types. The present research can provide new insight into the spatial variability of clay minerals in arid and semi-arid regions of Iran that could be extended to other similar environments. Moreover, the results showed that the easily available environmental variables could provide reliable predictions. However, other environmental covariates, such as XRF analysis, Vis-NIR, and MIR spectroscopy, are also recommended as input variables for further studies." @default.
- W4316253709 created "2023-01-15" @default.
- W4316253709 creator A5027466575 @default.
- W4316253709 creator A5046177232 @default.
- W4316253709 creator A5083665278 @default.
- W4316253709 date "2023-04-01" @default.
- W4316253709 modified "2023-10-16" @default.
- W4316253709 title "Mapping clay mineral types using easily accessible data and machine learning techniques in a scarce data region: A case study in a semi-arid area in Iran" @default.
- W4316253709 cites W1539154381 @default.
- W4316253709 cites W1965420036 @default.
- W4316253709 cites W1969856628 @default.
- W4316253709 cites W1984749226 @default.
- W4316253709 cites W1993558456 @default.
- W4316253709 cites W2002879165 @default.
- W4316253709 cites W2011085164 @default.
- W4316253709 cites W2020144456 @default.
- W4316253709 cites W2029109292 @default.
- W4316253709 cites W2043761690 @default.
- W4316253709 cites W2053002218 @default.
- W4316253709 cites W2078082988 @default.
- W4316253709 cites W2081340599 @default.
- W4316253709 cites W2082560911 @default.
- W4316253709 cites W2089097786 @default.
- W4316253709 cites W2089953116 @default.
- W4316253709 cites W2091259694 @default.
- W4316253709 cites W2092943486 @default.
- W4316253709 cites W2100835317 @default.
- W4316253709 cites W2127617335 @default.
- W4316253709 cites W2155544089 @default.
- W4316253709 cites W2156419436 @default.
- W4316253709 cites W2161313304 @default.
- W4316253709 cites W2161548576 @default.
- W4316253709 cites W2239980843 @default.
- W4316253709 cites W2285314639 @default.
- W4316253709 cites W2308925226 @default.
- W4316253709 cites W2311270117 @default.
- W4316253709 cites W2413880414 @default.
- W4316253709 cites W2524681175 @default.
- W4316253709 cites W2542193189 @default.
- W4316253709 cites W2551774547 @default.
- W4316253709 cites W2590668453 @default.
- W4316253709 cites W2625718197 @default.
- W4316253709 cites W2750123487 @default.
- W4316253709 cites W2760334487 @default.
- W4316253709 cites W2760598016 @default.
- W4316253709 cites W2767202613 @default.
- W4316253709 cites W2782536332 @default.
- W4316253709 cites W2803339793 @default.
- W4316253709 cites W2889150036 @default.
- W4316253709 cites W2893301845 @default.
- W4316253709 cites W2910910405 @default.
- W4316253709 cites W2911964244 @default.
- W4316253709 cites W2947342498 @default.
- W4316253709 cites W2983296123 @default.
- W4316253709 cites W3010020030 @default.
- W4316253709 cites W3015248526 @default.
- W4316253709 cites W3043965265 @default.
- W4316253709 cites W3194508523 @default.
- W4316253709 cites W3195973013 @default.
- W4316253709 cites W3199918518 @default.
- W4316253709 cites W4205924964 @default.
- W4316253709 cites W2024835319 @default.
- W4316253709 doi "https://doi.org/10.1016/j.catena.2023.106932" @default.
- W4316253709 hasPublicationYear "2023" @default.
- W4316253709 type Work @default.
- W4316253709 citedByCount "0" @default.
- W4316253709 crossrefType "journal-article" @default.
- W4316253709 hasAuthorship W4316253709A5027466575 @default.
- W4316253709 hasAuthorship W4316253709A5046177232 @default.
- W4316253709 hasAuthorship W4316253709A5083665278 @default.
- W4316253709 hasConcept C104471815 @default.
- W4316253709 hasConcept C105795698 @default.
- W4316253709 hasConcept C127313418 @default.
- W4316253709 hasConcept C139945424 @default.
- W4316253709 hasConcept C152494472 @default.
- W4316253709 hasConcept C159390177 @default.
- W4316253709 hasConcept C159750122 @default.
- W4316253709 hasConcept C159985019 @default.
- W4316253709 hasConcept C181843262 @default.
- W4316253709 hasConcept C192562407 @default.
- W4316253709 hasConcept C199289684 @default.
- W4316253709 hasConcept C204323151 @default.
- W4316253709 hasConcept C2779429093 @default.
- W4316253709 hasConcept C2779899878 @default.
- W4316253709 hasConcept C2780873218 @default.
- W4316253709 hasConcept C33923547 @default.
- W4316253709 hasConcept C3742959 @default.
- W4316253709 hasConcept C39432304 @default.
- W4316253709 hasConcept C40212044 @default.
- W4316253709 hasConcept C62649853 @default.
- W4316253709 hasConceptScore W4316253709C104471815 @default.
- W4316253709 hasConceptScore W4316253709C105795698 @default.
- W4316253709 hasConceptScore W4316253709C127313418 @default.
- W4316253709 hasConceptScore W4316253709C139945424 @default.
- W4316253709 hasConceptScore W4316253709C152494472 @default.
- W4316253709 hasConceptScore W4316253709C159390177 @default.
- W4316253709 hasConceptScore W4316253709C159750122 @default.
- W4316253709 hasConceptScore W4316253709C159985019 @default.