Matches in SemOpenAlex for { <https://semopenalex.org/work/W4316259510> ?p ?o ?g. }
- W4316259510 abstract "Quantitative Trait Locus (QTL) analysis and Genome-Wide Association Studies (GWAS) have the power to identify variants that capture significant levels of phenotypic variance in complex traits. However, effort and time are required to select the best methods and optimize parameters and pre-processing steps. Although machine learning approaches have been shown to greatly assist in optimization and data processing, applying them to QTL analysis and GWAS is challenging due to the complexity of large, heterogenous datasets. Here, we describe proof-of-concept for an automated machine learning approach, AutoQTL, with the ability to automate many complex decisions related to analysis of complex traits and generate diverse solutions to describe relationships that exist in genetic data.Using a dataset of 18 putative QTL from a large-scale GWAS of body mass index in the laboratory rat, Rattus norvegicus , AutoQTL captures the phenotypic variance explained under a standard additive model while also providing evidence of non-additive effects including deviations from additivity and 2-way epistatic interactions from simulated data via multiple optimal solutions. Additionally, feature importance metrics provide different insights into the inheritance models and predictive power of multiple GWAS-derived putative QTL.This proof-of-concept illustrates that automated machine learning techniques can be applied to genetic data and has the potential to detect both additive and non-additive effects via various optimal solutions and feature importance metrics. In the future, we aim to expand AutoQTL to accommodate omics-level datasets with intelligent feature selection strategies." @default.
- W4316259510 created "2023-01-15" @default.
- W4316259510 creator A5001037575 @default.
- W4316259510 creator A5009468541 @default.
- W4316259510 creator A5013428346 @default.
- W4316259510 creator A5022499603 @default.
- W4316259510 creator A5025125590 @default.
- W4316259510 creator A5026500423 @default.
- W4316259510 creator A5032971510 @default.
- W4316259510 creator A5034950648 @default.
- W4316259510 creator A5037493083 @default.
- W4316259510 creator A5041952486 @default.
- W4316259510 creator A5048853796 @default.
- W4316259510 creator A5049025538 @default.
- W4316259510 creator A5052061613 @default.
- W4316259510 creator A5059592292 @default.
- W4316259510 creator A5061181693 @default.
- W4316259510 creator A5063591245 @default.
- W4316259510 creator A5077871707 @default.
- W4316259510 creator A5082052858 @default.
- W4316259510 creator A5082735519 @default.
- W4316259510 creator A5088182347 @default.
- W4316259510 date "2023-01-15" @default.
- W4316259510 modified "2023-09-27" @default.
- W4316259510 title "Automated quantitative trait locus analysis (AutoQTL)" @default.
- W4316259510 cites W1485039492 @default.
- W4316259510 cites W1547172306 @default.
- W4316259510 cites W1968426398 @default.
- W4316259510 cites W1971299565 @default.
- W4316259510 cites W1975396651 @default.
- W4316259510 cites W2004159986 @default.
- W4316259510 cites W2099085143 @default.
- W4316259510 cites W2126105956 @default.
- W4316259510 cites W2126964466 @default.
- W4316259510 cites W2154572047 @default.
- W4316259510 cites W2309832917 @default.
- W4316259510 cites W2338065342 @default.
- W4316259510 cites W2521967673 @default.
- W4316259510 cites W2548120468 @default.
- W4316259510 cites W2955219525 @default.
- W4316259510 cites W2984908682 @default.
- W4316259510 cites W3082963240 @default.
- W4316259510 cites W3089853421 @default.
- W4316259510 cites W3120388949 @default.
- W4316259510 cites W3185954937 @default.
- W4316259510 cites W4220930003 @default.
- W4316259510 cites W4250139975 @default.
- W4316259510 cites W4300605334 @default.
- W4316259510 doi "https://doi.org/10.1101/2023.01.12.523835" @default.
- W4316259510 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36711526" @default.
- W4316259510 hasPublicationYear "2023" @default.
- W4316259510 type Work @default.
- W4316259510 citedByCount "0" @default.
- W4316259510 crossrefType "posted-content" @default.
- W4316259510 hasAuthorship W4316259510A5001037575 @default.
- W4316259510 hasAuthorship W4316259510A5009468541 @default.
- W4316259510 hasAuthorship W4316259510A5013428346 @default.
- W4316259510 hasAuthorship W4316259510A5022499603 @default.
- W4316259510 hasAuthorship W4316259510A5025125590 @default.
- W4316259510 hasAuthorship W4316259510A5026500423 @default.
- W4316259510 hasAuthorship W4316259510A5032971510 @default.
- W4316259510 hasAuthorship W4316259510A5034950648 @default.
- W4316259510 hasAuthorship W4316259510A5037493083 @default.
- W4316259510 hasAuthorship W4316259510A5041952486 @default.
- W4316259510 hasAuthorship W4316259510A5048853796 @default.
- W4316259510 hasAuthorship W4316259510A5049025538 @default.
- W4316259510 hasAuthorship W4316259510A5052061613 @default.
- W4316259510 hasAuthorship W4316259510A5059592292 @default.
- W4316259510 hasAuthorship W4316259510A5061181693 @default.
- W4316259510 hasAuthorship W4316259510A5063591245 @default.
- W4316259510 hasAuthorship W4316259510A5077871707 @default.
- W4316259510 hasAuthorship W4316259510A5082052858 @default.
- W4316259510 hasAuthorship W4316259510A5082735519 @default.
- W4316259510 hasAuthorship W4316259510A5088182347 @default.
- W4316259510 hasBestOaLocation W43162595101 @default.
- W4316259510 hasConcept C104317684 @default.
- W4316259510 hasConcept C106208931 @default.
- W4316259510 hasConcept C106934330 @default.
- W4316259510 hasConcept C119857082 @default.
- W4316259510 hasConcept C124101348 @default.
- W4316259510 hasConcept C135763542 @default.
- W4316259510 hasConcept C148483581 @default.
- W4316259510 hasConcept C153209595 @default.
- W4316259510 hasConcept C154945302 @default.
- W4316259510 hasConcept C199360897 @default.
- W4316259510 hasConcept C41008148 @default.
- W4316259510 hasConcept C54355233 @default.
- W4316259510 hasConcept C61727976 @default.
- W4316259510 hasConcept C81941488 @default.
- W4316259510 hasConcept C86803240 @default.
- W4316259510 hasConceptScore W4316259510C104317684 @default.
- W4316259510 hasConceptScore W4316259510C106208931 @default.
- W4316259510 hasConceptScore W4316259510C106934330 @default.
- W4316259510 hasConceptScore W4316259510C119857082 @default.
- W4316259510 hasConceptScore W4316259510C124101348 @default.
- W4316259510 hasConceptScore W4316259510C135763542 @default.
- W4316259510 hasConceptScore W4316259510C148483581 @default.
- W4316259510 hasConceptScore W4316259510C153209595 @default.
- W4316259510 hasConceptScore W4316259510C154945302 @default.
- W4316259510 hasConceptScore W4316259510C199360897 @default.