Matches in SemOpenAlex for { <https://semopenalex.org/work/W4316339986> ?p ?o ?g. }
- W4316339986 abstract "Anticancer peptides (ACPs) are the types of peptides that have been demonstrated to have anticancer activities. Using ACPs to prevent cancer could be a viable alternative to conventional cancer treatments because they are safer and display higher selectivity. Due to ACP identification being highly lab-limited, expensive and lengthy, a computational method is proposed to predict ACPs from sequence information in this study. The process includes the input of the peptide sequences, feature extraction in terms of ordinal encoding with positional information and handcrafted features, and finally feature selection. The whole model comprises of two modules, including deep learning and machine learning algorithms. The deep learning module contained two channels: bidirectional long short-term memory (BiLSTM) and convolutional neural network (CNN). Light Gradient Boosting Machine (LightGBM) was used in the machine learning module. Finally, this study voted the three models' classification results for the three paths resulting in the model ensemble layer. This study provides insights into ACP prediction utilizing a novel method and presented a promising performance. It used a benchmark dataset for further exploration and improvement compared with previous studies. Our final model has an accuracy of 0.7895, sensitivity of 0.8153 and specificity of 0.7676, and it was increased by at least 2% compared with the state-of-the-art studies in all metrics. Hence, this paper presents a novel method that can potentially predict ACPs more effectively and efficiently. The work and source codes are made available to the community of researchers and developers at https://github.com/khanhlee/acp-ope/." @default.
- W4316339986 created "2023-01-16" @default.
- W4316339986 creator A5000493730 @default.
- W4316339986 creator A5003255539 @default.
- W4316339986 creator A5034382078 @default.
- W4316339986 creator A5039356516 @default.
- W4316339986 creator A5066420667 @default.
- W4316339986 date "2023-01-01" @default.
- W4316339986 modified "2023-10-17" @default.
- W4316339986 title "Prediction of anticancer peptides based on an ensemble model of deep learning and machine learning using ordinal positional encoding" @default.
- W4316339986 cites W1995757481 @default.
- W4316339986 cites W2074196504 @default.
- W4316339986 cites W2099153308 @default.
- W4316339986 cites W2118911320 @default.
- W4316339986 cites W2340970647 @default.
- W4316339986 cites W2799710201 @default.
- W4316339986 cites W2806146459 @default.
- W4316339986 cites W2912369228 @default.
- W4316339986 cites W2917557027 @default.
- W4316339986 cites W2936599975 @default.
- W4316339986 cites W2943935116 @default.
- W4316339986 cites W2945375732 @default.
- W4316339986 cites W2967387109 @default.
- W4316339986 cites W2972802464 @default.
- W4316339986 cites W2977235223 @default.
- W4316339986 cites W2987660980 @default.
- W4316339986 cites W2993604350 @default.
- W4316339986 cites W3001586597 @default.
- W4316339986 cites W3004222371 @default.
- W4316339986 cites W3023889133 @default.
- W4316339986 cites W3025501158 @default.
- W4316339986 cites W3046642830 @default.
- W4316339986 cites W3048086963 @default.
- W4316339986 cites W3091352107 @default.
- W4316339986 cites W3092381885 @default.
- W4316339986 cites W3092406486 @default.
- W4316339986 cites W3094567318 @default.
- W4316339986 cites W3128972055 @default.
- W4316339986 cites W3157841754 @default.
- W4316339986 cites W4200599415 @default.
- W4316339986 cites W4225983992 @default.
- W4316339986 cites W4296479259 @default.
- W4316339986 cites W3195342240 @default.
- W4316339986 doi "https://doi.org/10.1093/bib/bbac630" @default.
- W4316339986 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36642410" @default.
- W4316339986 hasPublicationYear "2023" @default.
- W4316339986 type Work @default.
- W4316339986 citedByCount "11" @default.
- W4316339986 countsByYear W43163399862023 @default.
- W4316339986 crossrefType "journal-article" @default.
- W4316339986 hasAuthorship W4316339986A5000493730 @default.
- W4316339986 hasAuthorship W4316339986A5003255539 @default.
- W4316339986 hasAuthorship W4316339986A5034382078 @default.
- W4316339986 hasAuthorship W4316339986A5039356516 @default.
- W4316339986 hasAuthorship W4316339986A5066420667 @default.
- W4316339986 hasConcept C108583219 @default.
- W4316339986 hasConcept C119857082 @default.
- W4316339986 hasConcept C119898033 @default.
- W4316339986 hasConcept C125411270 @default.
- W4316339986 hasConcept C13280743 @default.
- W4316339986 hasConcept C138885662 @default.
- W4316339986 hasConcept C148483581 @default.
- W4316339986 hasConcept C153180895 @default.
- W4316339986 hasConcept C154945302 @default.
- W4316339986 hasConcept C169258074 @default.
- W4316339986 hasConcept C185798385 @default.
- W4316339986 hasConcept C205649164 @default.
- W4316339986 hasConcept C2776401178 @default.
- W4316339986 hasConcept C41008148 @default.
- W4316339986 hasConcept C41895202 @default.
- W4316339986 hasConcept C45942800 @default.
- W4316339986 hasConcept C46686674 @default.
- W4316339986 hasConcept C50644808 @default.
- W4316339986 hasConcept C70153297 @default.
- W4316339986 hasConcept C81363708 @default.
- W4316339986 hasConceptScore W4316339986C108583219 @default.
- W4316339986 hasConceptScore W4316339986C119857082 @default.
- W4316339986 hasConceptScore W4316339986C119898033 @default.
- W4316339986 hasConceptScore W4316339986C125411270 @default.
- W4316339986 hasConceptScore W4316339986C13280743 @default.
- W4316339986 hasConceptScore W4316339986C138885662 @default.
- W4316339986 hasConceptScore W4316339986C148483581 @default.
- W4316339986 hasConceptScore W4316339986C153180895 @default.
- W4316339986 hasConceptScore W4316339986C154945302 @default.
- W4316339986 hasConceptScore W4316339986C169258074 @default.
- W4316339986 hasConceptScore W4316339986C185798385 @default.
- W4316339986 hasConceptScore W4316339986C205649164 @default.
- W4316339986 hasConceptScore W4316339986C2776401178 @default.
- W4316339986 hasConceptScore W4316339986C41008148 @default.
- W4316339986 hasConceptScore W4316339986C41895202 @default.
- W4316339986 hasConceptScore W4316339986C45942800 @default.
- W4316339986 hasConceptScore W4316339986C46686674 @default.
- W4316339986 hasConceptScore W4316339986C50644808 @default.
- W4316339986 hasConceptScore W4316339986C70153297 @default.
- W4316339986 hasConceptScore W4316339986C81363708 @default.
- W4316339986 hasFunder F4320321040 @default.
- W4316339986 hasIssue "1" @default.
- W4316339986 hasLocation W43163399861 @default.
- W4316339986 hasLocation W43163399862 @default.
- W4316339986 hasOpenAccess W4316339986 @default.