Matches in SemOpenAlex for { <https://semopenalex.org/work/W4316363460> ?p ?o ?g. }
- W4316363460 abstract "Objective To investigate clinical characteristics, radiological features and biomarkers of pancreatic metastases of small cell lung carcinoma (PM-SCLC), and establish a convenient nomogram diagnostic predictive model to differentiate PM-SCLC from pancreatic ductal adenocarcinomas (PDAC) preoperatively. Methods A total of 299 patients with meeting the criteria (PM-SCLC n=93; PDAC n=206) from January 2016 to March 2022 were retrospectively analyzed, including 249 patients from hospital 1 (training/internal validation cohort) and 50 patients from hospital 2 (external validation cohort). We searched for meaningful clinical characteristics, radiological features and biomarkers and determined the predictors through multivariable logistic regression analysis. Three models: clinical model, CT imaging model, and combined model, were developed for the diagnosis and prediction of PM-SCLC. Nomogram was constructed based on independent predictors. The receiver operating curve was undertaken to estimate the discrimination. Results Six independent predictors for PM-SCLC diagnosis in multivariate logistic regression analysis, including clinical symptoms, CA199, tumor size, parenchymal atrophy, vascular involvement and enhancement type. The nomogram diagnostic predictive model based on these six independent predictors showed the best performance, achieved the AUCs of the training cohort (n = 174), internal validation cohort (n = 75) and external validation cohort (n = 50) were 0.950 (95%CI, 0.917-0.976), 0.928 (95%CI, 0.873-0.971) and 0.976 (95%CI, 0.944-1.00) respectively. The model achieved 94.50% sensitivity, 83.20% specificity, 86.80% accuracy in the training cohort and 100.00% sensitivity, 80.40% specificity, 86.70% accuracy in the internal validation cohort and 100.00% sensitivity, 88.90% specificity, 87.50% accuracy in the external validation cohort. Conclusion We proposed a noninvasive and convenient nomogram diagnostic predictive model based on clinical characteristics, radiological features and biomarkers to preoperatively differentiate PM-SCLC from PDAC." @default.
- W4316363460 created "2023-01-16" @default.
- W4316363460 creator A5002282181 @default.
- W4316363460 creator A5006952250 @default.
- W4316363460 creator A5017330670 @default.
- W4316363460 creator A5024028138 @default.
- W4316363460 creator A5035190117 @default.
- W4316363460 creator A5038201776 @default.
- W4316363460 creator A5049245650 @default.
- W4316363460 creator A5070436601 @default.
- W4316363460 creator A5090984328 @default.
- W4316363460 date "2023-01-16" @default.
- W4316363460 modified "2023-09-26" @default.
- W4316363460 title "A nomogram diagnostic prediction model of pancreatic metastases of small cell lung carcinoma based on clinical characteristics, radiological features and biomarkers" @default.
- W4316363460 cites W1520920292 @default.
- W4316363460 cites W1794120865 @default.
- W4316363460 cites W1825978543 @default.
- W4316363460 cites W1889135009 @default.
- W4316363460 cites W1917843933 @default.
- W4316363460 cites W1969308687 @default.
- W4316363460 cites W1983005993 @default.
- W4316363460 cites W1988916080 @default.
- W4316363460 cites W2000091608 @default.
- W4316363460 cites W2018183145 @default.
- W4316363460 cites W2071379789 @default.
- W4316363460 cites W2082758576 @default.
- W4316363460 cites W2107023793 @default.
- W4316363460 cites W2107150178 @default.
- W4316363460 cites W2125455064 @default.
- W4316363460 cites W2138022371 @default.
- W4316363460 cites W2147541606 @default.
- W4316363460 cites W2161360378 @default.
- W4316363460 cites W2337462164 @default.
- W4316363460 cites W2410127148 @default.
- W4316363460 cites W2432882033 @default.
- W4316363460 cites W2518633309 @default.
- W4316363460 cites W2524594381 @default.
- W4316363460 cites W2588723305 @default.
- W4316363460 cites W2770438853 @default.
- W4316363460 cites W2791553261 @default.
- W4316363460 cites W2803441813 @default.
- W4316363460 cites W2897620361 @default.
- W4316363460 cites W2913039863 @default.
- W4316363460 cites W2953013607 @default.
- W4316363460 cites W2993496365 @default.
- W4316363460 cites W2999598452 @default.
- W4316363460 cites W3005043865 @default.
- W4316363460 cites W3022547087 @default.
- W4316363460 cites W3089629913 @default.
- W4316363460 cites W3138406526 @default.
- W4316363460 cites W3157675161 @default.
- W4316363460 cites W3173233572 @default.
- W4316363460 cites W3203223855 @default.
- W4316363460 cites W4214514234 @default.
- W4316363460 cites W4293661333 @default.
- W4316363460 cites W4294368638 @default.
- W4316363460 cites W4294754632 @default.
- W4316363460 cites W4296164316 @default.
- W4316363460 cites W4296480642 @default.
- W4316363460 cites W4304757976 @default.
- W4316363460 doi "https://doi.org/10.3389/fonc.2022.1106525" @default.
- W4316363460 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36727067" @default.
- W4316363460 hasPublicationYear "2023" @default.
- W4316363460 type Work @default.
- W4316363460 citedByCount "0" @default.
- W4316363460 crossrefType "journal-article" @default.
- W4316363460 hasAuthorship W4316363460A5002282181 @default.
- W4316363460 hasAuthorship W4316363460A5006952250 @default.
- W4316363460 hasAuthorship W4316363460A5017330670 @default.
- W4316363460 hasAuthorship W4316363460A5024028138 @default.
- W4316363460 hasAuthorship W4316363460A5035190117 @default.
- W4316363460 hasAuthorship W4316363460A5038201776 @default.
- W4316363460 hasAuthorship W4316363460A5049245650 @default.
- W4316363460 hasAuthorship W4316363460A5070436601 @default.
- W4316363460 hasAuthorship W4316363460A5090984328 @default.
- W4316363460 hasBestOaLocation W43163634601 @default.
- W4316363460 hasConcept C121608353 @default.
- W4316363460 hasConcept C126322002 @default.
- W4316363460 hasConcept C126838900 @default.
- W4316363460 hasConcept C143998085 @default.
- W4316363460 hasConcept C151956035 @default.
- W4316363460 hasConcept C190892606 @default.
- W4316363460 hasConcept C2780210213 @default.
- W4316363460 hasConcept C2992026798 @default.
- W4316363460 hasConcept C34626388 @default.
- W4316363460 hasConcept C58471807 @default.
- W4316363460 hasConcept C71924100 @default.
- W4316363460 hasConcept C72563966 @default.
- W4316363460 hasConceptScore W4316363460C121608353 @default.
- W4316363460 hasConceptScore W4316363460C126322002 @default.
- W4316363460 hasConceptScore W4316363460C126838900 @default.
- W4316363460 hasConceptScore W4316363460C143998085 @default.
- W4316363460 hasConceptScore W4316363460C151956035 @default.
- W4316363460 hasConceptScore W4316363460C190892606 @default.
- W4316363460 hasConceptScore W4316363460C2780210213 @default.
- W4316363460 hasConceptScore W4316363460C2992026798 @default.
- W4316363460 hasConceptScore W4316363460C34626388 @default.
- W4316363460 hasConceptScore W4316363460C58471807 @default.
- W4316363460 hasConceptScore W4316363460C71924100 @default.
- W4316363460 hasConceptScore W4316363460C72563966 @default.