Matches in SemOpenAlex for { <https://semopenalex.org/work/W4316464265> ?p ?o ?g. }
- W4316464265 abstract "Background : The BRAF V600E mutation is a valuable indicator for thyroid cancer diagnosis. This study aimed to develop a deep convolutional neural network (DCNN) model based on ultrasound images to predict the BRAF V600E mutation status of thyroid nodules. Methods : The ultrasound images were obtained from four hospitals between January 2017 and January 2022. We trained and validated the DCNN model based on the primary set from center 1 (979 images, 528 patients). The DCNN network consists of Conv block, Downsample block, Gaussian error linear unit, Global Average Polling, and Full Connected. The predictive performance of this model was evaluated by using areas under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity in four independent test sets from center 1 to center 4 (531 images, 282 patients). Heatmaps were used to visualize the most predictive regions of each image. Specimens obtained through fine‐needle aspiration or surgery were used to detect the BRAF V600E mutation. Results : The DCNN model achieved encouraging predictive performance by fivefold cross‐validation (AUC 0.95) in the primary set. This performance was further confirmed in the independent internal test set (AUC 0.93) and three independent external test sets (AUC 0.84–0.88). The deep learning score revealed significant differences between BRAF V600E ‐mutant and BRAF V600E ‐wild‐type groups (all test sets p < .001). The heatmaps visualized the most predictive region located inside or alongside the thyroid nodules. Conclusion : A DCNN model with encouraging predictive performance was developed based on ultrasound images to predict the BRAF V600E mutation status of thyroid nodules." @default.
- W4316464265 created "2023-01-16" @default.
- W4316464265 creator A5000848460 @default.
- W4316464265 creator A5005096692 @default.
- W4316464265 creator A5013264888 @default.
- W4316464265 creator A5013941218 @default.
- W4316464265 creator A5023152404 @default.
- W4316464265 creator A5033003105 @default.
- W4316464265 creator A5041961675 @default.
- W4316464265 creator A5054842792 @default.
- W4316464265 creator A5062206654 @default.
- W4316464265 creator A5064010223 @default.
- W4316464265 creator A5066172133 @default.
- W4316464265 creator A5083985853 @default.
- W4316464265 date "2023-01-16" @default.
- W4316464265 modified "2023-10-17" @default.
- W4316464265 title "AI‐BRAF<sup>V600E</sup>: A deep convolutional neural network for BRAF<sup>V600E</sup> mutation status prediction of thyroid nodules using ultrasound images" @default.
- W4316464265 cites W1160323459 @default.
- W4316464265 cites W2045658574 @default.
- W4316464265 cites W2062493935 @default.
- W4316464265 cites W2091213788 @default.
- W4316464265 cites W2101888941 @default.
- W4316464265 cites W2117539524 @default.
- W4316464265 cites W2127890285 @default.
- W4316464265 cites W2145150141 @default.
- W4316464265 cites W2148699105 @default.
- W4316464265 cites W2768538115 @default.
- W4316464265 cites W2782896508 @default.
- W4316464265 cites W2783687327 @default.
- W4316464265 cites W2803760365 @default.
- W4316464265 cites W2910380368 @default.
- W4316464265 cites W2911188335 @default.
- W4316464265 cites W2919115771 @default.
- W4316464265 cites W2941657542 @default.
- W4316464265 cites W2956423933 @default.
- W4316464265 cites W2983124488 @default.
- W4316464265 cites W3006477896 @default.
- W4316464265 cites W3015691951 @default.
- W4316464265 cites W3030421963 @default.
- W4316464265 cites W3039237605 @default.
- W4316464265 cites W3044996171 @default.
- W4316464265 cites W3096176742 @default.
- W4316464265 cites W3096690547 @default.
- W4316464265 cites W3109004748 @default.
- W4316464265 cites W3115626947 @default.
- W4316464265 cites W3135379929 @default.
- W4316464265 cites W3146345129 @default.
- W4316464265 cites W3171596799 @default.
- W4316464265 cites W3172005333 @default.
- W4316464265 cites W3204312334 @default.
- W4316464265 cites W4221030861 @default.
- W4316464265 cites W4224282958 @default.
- W4316464265 cites W4281744105 @default.
- W4316464265 doi "https://doi.org/10.1002/viw.20220057" @default.
- W4316464265 hasPublicationYear "2023" @default.
- W4316464265 type Work @default.
- W4316464265 citedByCount "0" @default.
- W4316464265 crossrefType "journal-article" @default.
- W4316464265 hasAuthorship W4316464265A5000848460 @default.
- W4316464265 hasAuthorship W4316464265A5005096692 @default.
- W4316464265 hasAuthorship W4316464265A5013264888 @default.
- W4316464265 hasAuthorship W4316464265A5013941218 @default.
- W4316464265 hasAuthorship W4316464265A5023152404 @default.
- W4316464265 hasAuthorship W4316464265A5033003105 @default.
- W4316464265 hasAuthorship W4316464265A5041961675 @default.
- W4316464265 hasAuthorship W4316464265A5054842792 @default.
- W4316464265 hasAuthorship W4316464265A5062206654 @default.
- W4316464265 hasAuthorship W4316464265A5064010223 @default.
- W4316464265 hasAuthorship W4316464265A5066172133 @default.
- W4316464265 hasAuthorship W4316464265A5083985853 @default.
- W4316464265 hasBestOaLocation W43164642651 @default.
- W4316464265 hasConcept C104317684 @default.
- W4316464265 hasConcept C126322002 @default.
- W4316464265 hasConcept C126838900 @default.
- W4316464265 hasConcept C143753070 @default.
- W4316464265 hasConcept C154945302 @default.
- W4316464265 hasConcept C169903167 @default.
- W4316464265 hasConcept C2776470698 @default.
- W4316464265 hasConcept C2779022025 @default.
- W4316464265 hasConcept C2779761222 @default.
- W4316464265 hasConcept C2993294228 @default.
- W4316464265 hasConcept C41008148 @default.
- W4316464265 hasConcept C501734568 @default.
- W4316464265 hasConcept C526584372 @default.
- W4316464265 hasConcept C55493867 @default.
- W4316464265 hasConcept C58471807 @default.
- W4316464265 hasConcept C71924100 @default.
- W4316464265 hasConcept C81363708 @default.
- W4316464265 hasConcept C86803240 @default.
- W4316464265 hasConceptScore W4316464265C104317684 @default.
- W4316464265 hasConceptScore W4316464265C126322002 @default.
- W4316464265 hasConceptScore W4316464265C126838900 @default.
- W4316464265 hasConceptScore W4316464265C143753070 @default.
- W4316464265 hasConceptScore W4316464265C154945302 @default.
- W4316464265 hasConceptScore W4316464265C169903167 @default.
- W4316464265 hasConceptScore W4316464265C2776470698 @default.
- W4316464265 hasConceptScore W4316464265C2779022025 @default.
- W4316464265 hasConceptScore W4316464265C2779761222 @default.
- W4316464265 hasConceptScore W4316464265C2993294228 @default.
- W4316464265 hasConceptScore W4316464265C41008148 @default.