Matches in SemOpenAlex for { <https://semopenalex.org/work/W4316466461> ?p ?o ?g. }
- W4316466461 endingPage "41" @default.
- W4316466461 startingPage "17" @default.
- W4316466461 abstract "Abstract. Attribution of sea-level change to its different drivers is typically done using a sea-level budget approach. While the global mean sea-level budget is considered closed, closing the budget on a finer spatial scale is more complicated due to, for instance, limitations in our observational system and the spatial processes contributing to regional sea-level change. Consequently, the regional budget has been mainly analysed on a basin-wide scale. Here we investigate the sea-level budget at sub-basin scales, using two machine learning techniques to extract domains of coherent sea-level variability: a neural network approach (self-organizing map, SOM) and a network detection approach (δ-MAPS). The extracted domains provide more spatial detail within the ocean basins and indicate how sea-level variability is connected among different regions. Using these domains we can close, within 1σ uncertainty, the sub-basin regional sea-level budget from 1993–2016 in 100 % and 76 % of the SOM and δ-MAPS regions, respectively. Steric variations dominate the temporal sea-level variability and determine a significant part of the total regional change. Sea-level change due to mass exchange between ocean and land has a relatively homogeneous contribution to all regions. In highly dynamic regions (e.g. the Gulf Stream region) the dynamic mass redistribution is significant. Regions where the budget cannot be closed highlight processes that are affecting sea level but are not well captured by the observations, such as the influence of western boundary currents. The use of the budget approach in combination with machine learning techniques leads to new insights into regional sea-level variability and its drivers." @default.
- W4316466461 created "2023-01-16" @default.
- W4316466461 creator A5013539173 @default.
- W4316466461 creator A5041541652 @default.
- W4316466461 creator A5049185014 @default.
- W4316466461 creator A5057613319 @default.
- W4316466461 creator A5063378370 @default.
- W4316466461 creator A5069437682 @default.
- W4316466461 creator A5090593125 @default.
- W4316466461 date "2023-01-16" @default.
- W4316466461 modified "2023-10-01" @default.
- W4316466461 title "Regionalizing the sea-level budget with machine learning techniques" @default.
- W4316466461 cites W1532228020 @default.
- W4316466461 cites W1562504550 @default.
- W4316466461 cites W1588827410 @default.
- W4316466461 cites W1685070370 @default.
- W4316466461 cites W1818082880 @default.
- W4316466461 cites W1860063347 @default.
- W4316466461 cites W1951007519 @default.
- W4316466461 cites W1964959873 @default.
- W4316466461 cites W1975019927 @default.
- W4316466461 cites W1985857331 @default.
- W4316466461 cites W1990923543 @default.
- W4316466461 cites W1997722977 @default.
- W4316466461 cites W2003069746 @default.
- W4316466461 cites W2003610960 @default.
- W4316466461 cites W2006900639 @default.
- W4316466461 cites W2009139347 @default.
- W4316466461 cites W2025694538 @default.
- W4316466461 cites W2038465700 @default.
- W4316466461 cites W2052831834 @default.
- W4316466461 cites W2054302554 @default.
- W4316466461 cites W2063859260 @default.
- W4316466461 cites W2064983838 @default.
- W4316466461 cites W2074153798 @default.
- W4316466461 cites W2076202396 @default.
- W4316466461 cites W2108532992 @default.
- W4316466461 cites W2109254022 @default.
- W4316466461 cites W2109862792 @default.
- W4316466461 cites W2115736287 @default.
- W4316466461 cites W2116695301 @default.
- W4316466461 cites W2118002644 @default.
- W4316466461 cites W2121719215 @default.
- W4316466461 cites W2132707066 @default.
- W4316466461 cites W2136262272 @default.
- W4316466461 cites W2137565947 @default.
- W4316466461 cites W2141155811 @default.
- W4316466461 cites W2141861439 @default.
- W4316466461 cites W2142635246 @default.
- W4316466461 cites W2147988117 @default.
- W4316466461 cites W2151389838 @default.
- W4316466461 cites W2154207321 @default.
- W4316466461 cites W2168175751 @default.
- W4316466461 cites W2201182621 @default.
- W4316466461 cites W2259719819 @default.
- W4316466461 cites W2260016662 @default.
- W4316466461 cites W2297031566 @default.
- W4316466461 cites W2324428367 @default.
- W4316466461 cites W2419035885 @default.
- W4316466461 cites W2496850338 @default.
- W4316466461 cites W2519103570 @default.
- W4316466461 cites W2519659019 @default.
- W4316466461 cites W2523841373 @default.
- W4316466461 cites W2525232481 @default.
- W4316466461 cites W2527986682 @default.
- W4316466461 cites W2536819440 @default.
- W4316466461 cites W2615038948 @default.
- W4316466461 cites W2735977419 @default.
- W4316466461 cites W2753989175 @default.
- W4316466461 cites W2767247831 @default.
- W4316466461 cites W2769483327 @default.
- W4316466461 cites W2772182193 @default.
- W4316466461 cites W2791684036 @default.
- W4316466461 cites W2791874156 @default.
- W4316466461 cites W2804007973 @default.
- W4316466461 cites W2806837983 @default.
- W4316466461 cites W2810491782 @default.
- W4316466461 cites W2893821991 @default.
- W4316466461 cites W2908773481 @default.
- W4316466461 cites W2909681691 @default.
- W4316466461 cites W2913983560 @default.
- W4316466461 cites W2916950955 @default.
- W4316466461 cites W2921565324 @default.
- W4316466461 cites W2941258100 @default.
- W4316466461 cites W2943222986 @default.
- W4316466461 cites W2943519159 @default.
- W4316466461 cites W2964005606 @default.
- W4316466461 cites W2991686417 @default.
- W4316466461 cites W3000707951 @default.
- W4316466461 cites W3016616867 @default.
- W4316466461 cites W3021798494 @default.
- W4316466461 cites W3042702740 @default.
- W4316466461 cites W3071221217 @default.
- W4316466461 cites W3088428876 @default.
- W4316466461 cites W3089079348 @default.
- W4316466461 cites W3096505078 @default.
- W4316466461 cites W3154309490 @default.
- W4316466461 cites W3162746455 @default.