Matches in SemOpenAlex for { <https://semopenalex.org/work/W4316466486> ?p ?o ?g. }
- W4316466486 endingPage "128" @default.
- W4316466486 startingPage "128" @default.
- W4316466486 abstract "The present study investigates the optimization and advanced simulation of the flotation process of coarse particles (–425 + 106) using micro-nanobubbles (MNBs). For this purpose, flotation experiments in the presence and absence of MNBs were performed on coarse quartz particles, and the results were statistically analyzed. Methyl isobutyl carbinol (MIBC) was employed as a frother for generating MNBs through hydrodynamic cavitation. The significance of the operating variables, including impeller speed, air flow rate, together with the bubble size, and particle size on the flotation recovery was assessed using historical data (HD) design and analysis of variance (ANOVA). The correlation between the flotation parameters and process response in the presence and absence of MNBs was modeled using hybrid convolutional neural networks (CNNs) and recurrent neural networks (RNNs) as the deep learning (DL) frameworks to automatically extract features from input data using a CNN as the base layer. The ANOVA results indicated that all variables affect process responses statistically and meaningfully. Significant interactions were found between air flow rate and particle size as well as impeller speed and MNB size. It was found that a CNN-RNN model could finally be used to model the process based on the intelligent simulation results. Based on Pearson correlation coefficients (PCCs), it was evident that particle size had a strong linear relationship with recovery. However, Shapley additive explanations (SHAP) was considerably more accurate in predicting relationships than Pearson correlations, even though the model outputs agreed well." @default.
- W4316466486 created "2023-01-16" @default.
- W4316466486 creator A5011086034 @default.
- W4316466486 creator A5012029157 @default.
- W4316466486 creator A5019117111 @default.
- W4316466486 creator A5039511345 @default.
- W4316466486 creator A5060676374 @default.
- W4316466486 creator A5086155499 @default.
- W4316466486 date "2023-01-16" @default.
- W4316466486 modified "2023-10-06" @default.
- W4316466486 title "Advanced Simulation of Quartz Flotation Using Micro-Nanobubbles by Hybrid Serving of Historical Data (HD) and Deep Learning (DL) Methods" @default.
- W4316466486 cites W1982313668 @default.
- W4316466486 cites W1984020445 @default.
- W4316466486 cites W1987562649 @default.
- W4316466486 cites W1996539484 @default.
- W4316466486 cites W2001471199 @default.
- W4316466486 cites W2018125461 @default.
- W4316466486 cites W2019421504 @default.
- W4316466486 cites W2023295072 @default.
- W4316466486 cites W2031599384 @default.
- W4316466486 cites W2050520901 @default.
- W4316466486 cites W2056657073 @default.
- W4316466486 cites W2060162609 @default.
- W4316466486 cites W2064675550 @default.
- W4316466486 cites W2065716735 @default.
- W4316466486 cites W2092155486 @default.
- W4316466486 cites W2107878631 @default.
- W4316466486 cites W2158734339 @default.
- W4316466486 cites W2203053525 @default.
- W4316466486 cites W2549722648 @default.
- W4316466486 cites W2749028154 @default.
- W4316466486 cites W2888160795 @default.
- W4316466486 cites W2890637532 @default.
- W4316466486 cites W2893724357 @default.
- W4316466486 cites W2896947501 @default.
- W4316466486 cites W2901002889 @default.
- W4316466486 cites W2905005160 @default.
- W4316466486 cites W2906947858 @default.
- W4316466486 cites W2922056388 @default.
- W4316466486 cites W2950964404 @default.
- W4316466486 cites W2966804724 @default.
- W4316466486 cites W2972893178 @default.
- W4316466486 cites W2997280045 @default.
- W4316466486 cites W3000463950 @default.
- W4316466486 cites W3005188801 @default.
- W4316466486 cites W3006043064 @default.
- W4316466486 cites W3008130297 @default.
- W4316466486 cites W3009111606 @default.
- W4316466486 cites W3017116930 @default.
- W4316466486 cites W3026717820 @default.
- W4316466486 cites W3032838310 @default.
- W4316466486 cites W3042944559 @default.
- W4316466486 cites W3047143366 @default.
- W4316466486 cites W3092669580 @default.
- W4316466486 cites W3098019734 @default.
- W4316466486 cites W3112990811 @default.
- W4316466486 cites W3134550335 @default.
- W4316466486 cites W3135849639 @default.
- W4316466486 cites W3137611682 @default.
- W4316466486 cites W3138560023 @default.
- W4316466486 cites W3152697804 @default.
- W4316466486 cites W3163813011 @default.
- W4316466486 cites W3165512006 @default.
- W4316466486 cites W3189515467 @default.
- W4316466486 cites W3194024291 @default.
- W4316466486 cites W3200685136 @default.
- W4316466486 cites W3201739669 @default.
- W4316466486 cites W3207066068 @default.
- W4316466486 cites W3207942183 @default.
- W4316466486 cites W4200397128 @default.
- W4316466486 cites W4213021104 @default.
- W4316466486 cites W4223482200 @default.
- W4316466486 cites W4225995462 @default.
- W4316466486 cites W4281400520 @default.
- W4316466486 cites W4283796874 @default.
- W4316466486 cites W4283832256 @default.
- W4316466486 cites W4294740371 @default.
- W4316466486 cites W841982912 @default.
- W4316466486 doi "https://doi.org/10.3390/min13010128" @default.
- W4316466486 hasPublicationYear "2023" @default.
- W4316466486 type Work @default.
- W4316466486 citedByCount "1" @default.
- W4316466486 countsByYear W43164664862023 @default.
- W4316466486 crossrefType "journal-article" @default.
- W4316466486 hasAuthorship W4316466486A5011086034 @default.
- W4316466486 hasAuthorship W4316466486A5012029157 @default.
- W4316466486 hasAuthorship W4316466486A5019117111 @default.
- W4316466486 hasAuthorship W4316466486A5039511345 @default.
- W4316466486 hasAuthorship W4316466486A5060676374 @default.
- W4316466486 hasAuthorship W4316466486A5086155499 @default.
- W4316466486 hasBestOaLocation W43164664861 @default.
- W4316466486 hasConcept C105795698 @default.
- W4316466486 hasConcept C111368507 @default.
- W4316466486 hasConcept C111919701 @default.
- W4316466486 hasConcept C121332964 @default.
- W4316466486 hasConcept C121955636 @default.
- W4316466486 hasConcept C127313418 @default.
- W4316466486 hasConcept C127413603 @default.