Matches in SemOpenAlex for { <https://semopenalex.org/work/W4316468322> ?p ?o ?g. }
- W4316468322 endingPage "96" @default.
- W4316468322 startingPage "80" @default.
- W4316468322 abstract "Batch machining systems are essential for improving productivity and quality, but they consume considerable amounts of energy due to the continuous interaction with machine tools, workpieces, and cutting tools. In contrast to single-piece machining that has a short production cycle, the tool wear impacts in batch machining systems on energy consumption cannot be underestimated. However, few studies have focused on adaptive process control subject to time-varying tool wear because process optimization has always been previously considered a static problem. As an alternative to metaheuristic algorithms, reinforcement learning (RL) offers an attractive means for solving such a dynamic, high-dimensional, and high-coupling problem. In the case of turning cylindrical parts, an energy-efficient decision model is developed for the process control of pass operations of batch machining. The decision variables are decoupled by reformulating the problem as the Markov decision process, wherein the tool wear experiences dynamic changes. To solve the problem, an actor-critic RL framework with multi-constraint and multi-objective design is developed. Based on the framework, a dynamic process control method is proposed where the RL agent observes workpiece features, machining requirements, and tool wear states (inputs) and adaptively selects the control parameters such as cutting speed, feed rate, and cutting rate (outputs), with the aim to conserve energy. Two application tests and comparisons against metaheuristic methods are performed. The results indicate that the method can further reduce energy by over 20% compared with energy-efficient optimization ignoring tool wear effects. The learning efficiency of RL is about three times faster than that of metaheuristics. The online sampling time is less than 0.1 millisecond, which facilitates real-time control of process parameters." @default.
- W4316468322 created "2023-01-16" @default.
- W4316468322 creator A5033963132 @default.
- W4316468322 creator A5065435984 @default.
- W4316468322 creator A5079101040 @default.
- W4316468322 creator A5079980090 @default.
- W4316468322 date "2023-04-01" @default.
- W4316468322 modified "2023-10-16" @default.
- W4316468322 title "Adaptive optimal process control with actor-critic design for energy-efficient batch machining subject to time-varying tool wear" @default.
- W4316468322 cites W1597341217 @default.
- W4316468322 cites W1990085045 @default.
- W4316468322 cites W2024139140 @default.
- W4316468322 cites W2036857153 @default.
- W4316468322 cites W2042415399 @default.
- W4316468322 cites W2056101381 @default.
- W4316468322 cites W2074509437 @default.
- W4316468322 cites W2147573707 @default.
- W4316468322 cites W2488339603 @default.
- W4316468322 cites W2606906937 @default.
- W4316468322 cites W2625286567 @default.
- W4316468322 cites W2789973890 @default.
- W4316468322 cites W2884842875 @default.
- W4316468322 cites W2906232595 @default.
- W4316468322 cites W2913584114 @default.
- W4316468322 cites W2938538323 @default.
- W4316468322 cites W2962899903 @default.
- W4316468322 cites W2963761387 @default.
- W4316468322 cites W2966593865 @default.
- W4316468322 cites W2975615763 @default.
- W4316468322 cites W3000206877 @default.
- W4316468322 cites W3012250961 @default.
- W4316468322 cites W3086019649 @default.
- W4316468322 cites W3093780883 @default.
- W4316468322 cites W3120940909 @default.
- W4316468322 cites W3125624564 @default.
- W4316468322 cites W3156287542 @default.
- W4316468322 cites W3185296885 @default.
- W4316468322 cites W3186102375 @default.
- W4316468322 cites W3205610877 @default.
- W4316468322 cites W3206880353 @default.
- W4316468322 cites W4210779999 @default.
- W4316468322 cites W4225116478 @default.
- W4316468322 cites W4280497173 @default.
- W4316468322 cites W4285085977 @default.
- W4316468322 cites W4309565460 @default.
- W4316468322 cites W4312495133 @default.
- W4316468322 doi "https://doi.org/10.1016/j.jmsy.2023.01.005" @default.
- W4316468322 hasPublicationYear "2023" @default.
- W4316468322 type Work @default.
- W4316468322 citedByCount "4" @default.
- W4316468322 countsByYear W43164683222023 @default.
- W4316468322 crossrefType "journal-article" @default.
- W4316468322 hasAuthorship W4316468322A5033963132 @default.
- W4316468322 hasAuthorship W4316468322A5065435984 @default.
- W4316468322 hasAuthorship W4316468322A5079101040 @default.
- W4316468322 hasAuthorship W4316468322A5079980090 @default.
- W4316468322 hasConcept C105795698 @default.
- W4316468322 hasConcept C109718341 @default.
- W4316468322 hasConcept C111919701 @default.
- W4316468322 hasConcept C119599485 @default.
- W4316468322 hasConcept C126255220 @default.
- W4316468322 hasConcept C127413603 @default.
- W4316468322 hasConcept C133731056 @default.
- W4316468322 hasConcept C154945302 @default.
- W4316468322 hasConcept C186370098 @default.
- W4316468322 hasConcept C2776043813 @default.
- W4316468322 hasConcept C2776450708 @default.
- W4316468322 hasConcept C2780165032 @default.
- W4316468322 hasConcept C33923547 @default.
- W4316468322 hasConcept C41008148 @default.
- W4316468322 hasConcept C523214423 @default.
- W4316468322 hasConcept C5941749 @default.
- W4316468322 hasConcept C78519656 @default.
- W4316468322 hasConcept C97541855 @default.
- W4316468322 hasConcept C98045186 @default.
- W4316468322 hasConceptScore W4316468322C105795698 @default.
- W4316468322 hasConceptScore W4316468322C109718341 @default.
- W4316468322 hasConceptScore W4316468322C111919701 @default.
- W4316468322 hasConceptScore W4316468322C119599485 @default.
- W4316468322 hasConceptScore W4316468322C126255220 @default.
- W4316468322 hasConceptScore W4316468322C127413603 @default.
- W4316468322 hasConceptScore W4316468322C133731056 @default.
- W4316468322 hasConceptScore W4316468322C154945302 @default.
- W4316468322 hasConceptScore W4316468322C186370098 @default.
- W4316468322 hasConceptScore W4316468322C2776043813 @default.
- W4316468322 hasConceptScore W4316468322C2776450708 @default.
- W4316468322 hasConceptScore W4316468322C2780165032 @default.
- W4316468322 hasConceptScore W4316468322C33923547 @default.
- W4316468322 hasConceptScore W4316468322C41008148 @default.
- W4316468322 hasConceptScore W4316468322C523214423 @default.
- W4316468322 hasConceptScore W4316468322C5941749 @default.
- W4316468322 hasConceptScore W4316468322C78519656 @default.
- W4316468322 hasConceptScore W4316468322C97541855 @default.
- W4316468322 hasConceptScore W4316468322C98045186 @default.
- W4316468322 hasFunder F4320321921 @default.
- W4316468322 hasFunder F4320336213 @default.
- W4316468322 hasFunder F4320336567 @default.
- W4316468322 hasLocation W43164683221 @default.