Matches in SemOpenAlex for { <https://semopenalex.org/work/W4316496683> ?p ?o ?g. }
- W4316496683 endingPage "103622" @default.
- W4316496683 startingPage "103622" @default.
- W4316496683 abstract "In this work, we propose a general method for learning task and scale based attention representations in Multi-Task Learning (MTL) for vision. It relies on learning and maintaining cross-task and cross-scale representations of visual information, whose interaction contributes to a symmetrical improvement across the entire task pool. Apart from learning data representations, we additionally optimize for the most beneficial interaction between tasks and their representations at different scales. Our method adds an attention modulated feature as residual information to the processing of each scale stage within the model, including the final layer of task outputs. We empirically show the effectiveness of our method through experiments with current multi-modal and multi-scale architectures on diverse MTL datasets. We evaluate MATTE on high and low level vision MTL problems, against MTL and single task learning (STL) counterparts. For all experiments we report solid performance improvements in both qualitative and quantitative performance." @default.
- W4316496683 created "2023-01-16" @default.
- W4316496683 creator A5070684680 @default.
- W4316496683 creator A5081881122 @default.
- W4316496683 creator A5087813059 @default.
- W4316496683 date "2023-02-01" @default.
- W4316496683 modified "2023-09-26" @default.
- W4316496683 title "MATTE: Multi-task multi-scale attention" @default.
- W4316496683 cites W1923184257 @default.
- W4316496683 cites W1958932515 @default.
- W4316496683 cites W2054802006 @default.
- W4316496683 cites W2078224158 @default.
- W4316496683 cites W2110185148 @default.
- W4316496683 cites W2115441154 @default.
- W4316496683 cites W2119823327 @default.
- W4316496683 cites W2144764737 @default.
- W4316496683 cites W2412782625 @default.
- W4316496683 cites W2610366607 @default.
- W4316496683 cites W2791091755 @default.
- W4316496683 cites W2798372101 @default.
- W4316496683 cites W2884585870 @default.
- W4316496683 cites W2895387432 @default.
- W4316496683 cites W2895401575 @default.
- W4316496683 cites W2913340405 @default.
- W4316496683 cites W2916798096 @default.
- W4316496683 cites W2959581809 @default.
- W4316496683 cites W2963072899 @default.
- W4316496683 cites W2963258075 @default.
- W4316496683 cites W2963377935 @default.
- W4316496683 cites W2963430933 @default.
- W4316496683 cites W2963495494 @default.
- W4316496683 cites W2963498646 @default.
- W4316496683 cites W2963877604 @default.
- W4316496683 cites W2964185501 @default.
- W4316496683 cites W2982152811 @default.
- W4316496683 cites W2999145841 @default.
- W4316496683 cites W3124675547 @default.
- W4316496683 doi "https://doi.org/10.1016/j.cviu.2023.103622" @default.
- W4316496683 hasPublicationYear "2023" @default.
- W4316496683 type Work @default.
- W4316496683 citedByCount "0" @default.
- W4316496683 crossrefType "journal-article" @default.
- W4316496683 hasAuthorship W4316496683A5070684680 @default.
- W4316496683 hasAuthorship W4316496683A5081881122 @default.
- W4316496683 hasAuthorship W4316496683A5087813059 @default.
- W4316496683 hasBestOaLocation W43164966831 @default.
- W4316496683 hasConcept C11413529 @default.
- W4316496683 hasConcept C119857082 @default.
- W4316496683 hasConcept C121332964 @default.
- W4316496683 hasConcept C138885662 @default.
- W4316496683 hasConcept C154945302 @default.
- W4316496683 hasConcept C155512373 @default.
- W4316496683 hasConcept C162324750 @default.
- W4316496683 hasConcept C175154964 @default.
- W4316496683 hasConcept C185592680 @default.
- W4316496683 hasConcept C187736073 @default.
- W4316496683 hasConcept C188027245 @default.
- W4316496683 hasConcept C2776401178 @default.
- W4316496683 hasConcept C2778755073 @default.
- W4316496683 hasConcept C2780451532 @default.
- W4316496683 hasConcept C28006648 @default.
- W4316496683 hasConcept C41008148 @default.
- W4316496683 hasConcept C41895202 @default.
- W4316496683 hasConcept C62520636 @default.
- W4316496683 hasConcept C71139939 @default.
- W4316496683 hasConceptScore W4316496683C11413529 @default.
- W4316496683 hasConceptScore W4316496683C119857082 @default.
- W4316496683 hasConceptScore W4316496683C121332964 @default.
- W4316496683 hasConceptScore W4316496683C138885662 @default.
- W4316496683 hasConceptScore W4316496683C154945302 @default.
- W4316496683 hasConceptScore W4316496683C155512373 @default.
- W4316496683 hasConceptScore W4316496683C162324750 @default.
- W4316496683 hasConceptScore W4316496683C175154964 @default.
- W4316496683 hasConceptScore W4316496683C185592680 @default.
- W4316496683 hasConceptScore W4316496683C187736073 @default.
- W4316496683 hasConceptScore W4316496683C188027245 @default.
- W4316496683 hasConceptScore W4316496683C2776401178 @default.
- W4316496683 hasConceptScore W4316496683C2778755073 @default.
- W4316496683 hasConceptScore W4316496683C2780451532 @default.
- W4316496683 hasConceptScore W4316496683C28006648 @default.
- W4316496683 hasConceptScore W4316496683C41008148 @default.
- W4316496683 hasConceptScore W4316496683C41895202 @default.
- W4316496683 hasConceptScore W4316496683C62520636 @default.
- W4316496683 hasConceptScore W4316496683C71139939 @default.
- W4316496683 hasLocation W43164966831 @default.
- W4316496683 hasOpenAccess W4316496683 @default.
- W4316496683 hasPrimaryLocation W43164966831 @default.
- W4316496683 hasRelatedWork W1812322370 @default.
- W4316496683 hasRelatedWork W2597787948 @default.
- W4316496683 hasRelatedWork W2784094750 @default.
- W4316496683 hasRelatedWork W2961085424 @default.
- W4316496683 hasRelatedWork W3047894882 @default.
- W4316496683 hasRelatedWork W3200098538 @default.
- W4316496683 hasRelatedWork W3208584567 @default.
- W4316496683 hasRelatedWork W4285160008 @default.
- W4316496683 hasRelatedWork W4319309271 @default.
- W4316496683 hasRelatedWork W4366320140 @default.
- W4316496683 hasVolume "228" @default.