Matches in SemOpenAlex for { <https://semopenalex.org/work/W4316506819> ?p ?o ?g. }
- W4316506819 endingPage "82" @default.
- W4316506819 startingPage "71" @default.
- W4316506819 abstract "Abstract The characterization of dynamical processes in living systems provides important clues for their mechanistic interpretation and link to biological functions. Owing to recent advances in microscopy techniques, it is now possible to routinely record the motion of cells, organelles and individual molecules at multiple spatiotemporal scales in physiological conditions. However, the automated analysis of dynamics occurring in crowded and complex environments still lags behind the acquisition of microscopic image sequences. Here we present a framework based on geometric deep learning that achieves the accurate estimation of dynamical properties in various biologically relevant scenarios. This deep-learning approach relies on a graph neural network enhanced by attention-based components. By processing object features with geometric priors, the network is capable of performing multiple tasks, from linking coordinates into trajectories to inferring local and global dynamic properties. We demonstrate the flexibility and reliability of this approach by applying it to real and simulated data corresponding to a broad range of biological experiments." @default.
- W4316506819 created "2023-01-16" @default.
- W4316506819 creator A5007456183 @default.
- W4316506819 creator A5012105916 @default.
- W4316506819 creator A5015447894 @default.
- W4316506819 creator A5029089110 @default.
- W4316506819 creator A5042634422 @default.
- W4316506819 creator A5054849679 @default.
- W4316506819 creator A5077645019 @default.
- W4316506819 date "2023-01-16" @default.
- W4316506819 modified "2023-10-10" @default.
- W4316506819 title "Geometric deep learning reveals the spatiotemporal features of microscopic motion" @default.
- W4316506819 cites W1557847840 @default.
- W4316506819 cites W2026448092 @default.
- W4316506819 cites W2103706175 @default.
- W4316506819 cites W2105916176 @default.
- W4316506819 cites W2114387062 @default.
- W4316506819 cites W2126068541 @default.
- W4316506819 cites W2129140439 @default.
- W4316506819 cites W2135438092 @default.
- W4316506819 cites W2164727176 @default.
- W4316506819 cites W2169413395 @default.
- W4316506819 cites W2198296987 @default.
- W4316506819 cites W2254714379 @default.
- W4316506819 cites W2529052661 @default.
- W4316506819 cites W2558748708 @default.
- W4316506819 cites W2615256066 @default.
- W4316506819 cites W2758694956 @default.
- W4316506819 cites W2767369251 @default.
- W4316506819 cites W2895085799 @default.
- W4316506819 cites W2901988773 @default.
- W4316506819 cites W2954137266 @default.
- W4316506819 cites W2957050889 @default.
- W4316506819 cites W2975634117 @default.
- W4316506819 cites W2999435349 @default.
- W4316506819 cites W3007309629 @default.
- W4316506819 cites W3012540107 @default.
- W4316506819 cites W3035096461 @default.
- W4316506819 cites W3039859427 @default.
- W4316506819 cites W3048153593 @default.
- W4316506819 cites W3080971596 @default.
- W4316506819 cites W3103720336 @default.
- W4316506819 cites W3139354032 @default.
- W4316506819 cites W3160328916 @default.
- W4316506819 cites W3166157844 @default.
- W4316506819 cites W3177828909 @default.
- W4316506819 cites W3194016581 @default.
- W4316506819 cites W3196100277 @default.
- W4316506819 cites W3198310727 @default.
- W4316506819 cites W3207452968 @default.
- W4316506819 cites W3208295289 @default.
- W4316506819 cites W4253020087 @default.
- W4316506819 cites W4281665512 @default.
- W4316506819 cites W4293811910 @default.
- W4316506819 doi "https://doi.org/10.1038/s42256-022-00595-0" @default.
- W4316506819 hasPublicationYear "2023" @default.
- W4316506819 type Work @default.
- W4316506819 citedByCount "8" @default.
- W4316506819 countsByYear W43165068192023 @default.
- W4316506819 crossrefType "journal-article" @default.
- W4316506819 hasAuthorship W4316506819A5007456183 @default.
- W4316506819 hasAuthorship W4316506819A5012105916 @default.
- W4316506819 hasAuthorship W4316506819A5015447894 @default.
- W4316506819 hasAuthorship W4316506819A5029089110 @default.
- W4316506819 hasAuthorship W4316506819A5042634422 @default.
- W4316506819 hasAuthorship W4316506819A5054849679 @default.
- W4316506819 hasAuthorship W4316506819A5077645019 @default.
- W4316506819 hasBestOaLocation W43165068191 @default.
- W4316506819 hasConcept C104114177 @default.
- W4316506819 hasConcept C105795698 @default.
- W4316506819 hasConcept C108583219 @default.
- W4316506819 hasConcept C121332964 @default.
- W4316506819 hasConcept C154945302 @default.
- W4316506819 hasConcept C159985019 @default.
- W4316506819 hasConcept C163258240 @default.
- W4316506819 hasConcept C186060115 @default.
- W4316506819 hasConcept C192562407 @default.
- W4316506819 hasConcept C204323151 @default.
- W4316506819 hasConcept C2780598303 @default.
- W4316506819 hasConcept C33923547 @default.
- W4316506819 hasConcept C41008148 @default.
- W4316506819 hasConcept C43214815 @default.
- W4316506819 hasConcept C50644808 @default.
- W4316506819 hasConcept C62520636 @default.
- W4316506819 hasConcept C86803240 @default.
- W4316506819 hasConceptScore W4316506819C104114177 @default.
- W4316506819 hasConceptScore W4316506819C105795698 @default.
- W4316506819 hasConceptScore W4316506819C108583219 @default.
- W4316506819 hasConceptScore W4316506819C121332964 @default.
- W4316506819 hasConceptScore W4316506819C154945302 @default.
- W4316506819 hasConceptScore W4316506819C159985019 @default.
- W4316506819 hasConceptScore W4316506819C163258240 @default.
- W4316506819 hasConceptScore W4316506819C186060115 @default.
- W4316506819 hasConceptScore W4316506819C192562407 @default.
- W4316506819 hasConceptScore W4316506819C204323151 @default.
- W4316506819 hasConceptScore W4316506819C2780598303 @default.
- W4316506819 hasConceptScore W4316506819C33923547 @default.
- W4316506819 hasConceptScore W4316506819C41008148 @default.