Matches in SemOpenAlex for { <https://semopenalex.org/work/W4316652511> ?p ?o ?g. }
- W4316652511 abstract "Accurately classifying the surrounding rock of tunnel face is essential. In this paper, we propose a machine learning-based automatic classification and dynamic prediction method of the surrounding rocks of tunnel face using the data monitored by a computerized rock drilling trolley based on the intelligent mechanized construction process for drilling and blasting tunnels. This method provides auxiliary support for the intelligent decision of dynamic support at the construction site. First, this method solves the imbalance in the classification of the surrounding rock samples by constructing the Synthetic Minority Oversampling Technique (SMOTE) algorithm using 500 samples of drilling parameters covering different levels and lithologies of a tunnel. Second, it filters the importance of the characteristic samples based on the random forest method. Third, it uses the XGBoost algorithm to model the processed data and compare it with AdaBoost and BP neural network models. The results show that the XGBoost model achieves a higher accuracy of 87.5% when the sample size is small. Finally, we validate the application scenarios of the above algorithm/model regarding the key aspects of the tunnel construction process, such as surrounding rock identification, design interaction, construction supervision, and quality evaluation, which facilitates the upgrading of intelligent tunnel construction." @default.
- W4316652511 created "2023-01-17" @default.
- W4316652511 creator A5003484403 @default.
- W4316652511 creator A5014946139 @default.
- W4316652511 creator A5035419929 @default.
- W4316652511 creator A5043954565 @default.
- W4316652511 creator A5046122964 @default.
- W4316652511 creator A5053715764 @default.
- W4316652511 creator A5074264694 @default.
- W4316652511 date "2023-01-17" @default.
- W4316652511 modified "2023-09-30" @default.
- W4316652511 title "Classifying the surrounding rock of tunnel face using machine learning" @default.
- W4316652511 cites W2043316303 @default.
- W4316652511 cites W2885920940 @default.
- W4316652511 cites W2898954299 @default.
- W4316652511 cites W2936504543 @default.
- W4316652511 cites W2938577553 @default.
- W4316652511 cites W2972781809 @default.
- W4316652511 cites W3007489912 @default.
- W4316652511 cites W3087763244 @default.
- W4316652511 cites W3111787546 @default.
- W4316652511 cites W3145442279 @default.
- W4316652511 cites W3152187935 @default.
- W4316652511 cites W3166458872 @default.
- W4316652511 cites W3168525722 @default.
- W4316652511 cites W3214149409 @default.
- W4316652511 cites W4224303998 @default.
- W4316652511 cites W4296351432 @default.
- W4316652511 cites W4297906979 @default.
- W4316652511 cites W4304687468 @default.
- W4316652511 doi "https://doi.org/10.3389/feart.2022.1052117" @default.
- W4316652511 hasPublicationYear "2023" @default.
- W4316652511 type Work @default.
- W4316652511 citedByCount "0" @default.
- W4316652511 crossrefType "journal-article" @default.
- W4316652511 hasAuthorship W4316652511A5003484403 @default.
- W4316652511 hasAuthorship W4316652511A5014946139 @default.
- W4316652511 hasAuthorship W4316652511A5035419929 @default.
- W4316652511 hasAuthorship W4316652511A5043954565 @default.
- W4316652511 hasAuthorship W4316652511A5046122964 @default.
- W4316652511 hasAuthorship W4316652511A5053715764 @default.
- W4316652511 hasAuthorship W4316652511A5074264694 @default.
- W4316652511 hasBestOaLocation W43166525111 @default.
- W4316652511 hasConcept C111919701 @default.
- W4316652511 hasConcept C116834253 @default.
- W4316652511 hasConcept C119857082 @default.
- W4316652511 hasConcept C12267149 @default.
- W4316652511 hasConcept C124101348 @default.
- W4316652511 hasConcept C127313418 @default.
- W4316652511 hasConcept C127413603 @default.
- W4316652511 hasConcept C141404830 @default.
- W4316652511 hasConcept C144024400 @default.
- W4316652511 hasConcept C154945302 @default.
- W4316652511 hasConcept C16674752 @default.
- W4316652511 hasConcept C187320778 @default.
- W4316652511 hasConcept C197323446 @default.
- W4316652511 hasConcept C205507351 @default.
- W4316652511 hasConcept C25197100 @default.
- W4316652511 hasConcept C2776257435 @default.
- W4316652511 hasConcept C2778906150 @default.
- W4316652511 hasConcept C2779304628 @default.
- W4316652511 hasConcept C2987619373 @default.
- W4316652511 hasConcept C31258907 @default.
- W4316652511 hasConcept C36289849 @default.
- W4316652511 hasConcept C41008148 @default.
- W4316652511 hasConcept C50644808 @default.
- W4316652511 hasConcept C50933969 @default.
- W4316652511 hasConcept C59822182 @default.
- W4316652511 hasConcept C66938386 @default.
- W4316652511 hasConcept C78519656 @default.
- W4316652511 hasConcept C86803240 @default.
- W4316652511 hasConcept C98045186 @default.
- W4316652511 hasConceptScore W4316652511C111919701 @default.
- W4316652511 hasConceptScore W4316652511C116834253 @default.
- W4316652511 hasConceptScore W4316652511C119857082 @default.
- W4316652511 hasConceptScore W4316652511C12267149 @default.
- W4316652511 hasConceptScore W4316652511C124101348 @default.
- W4316652511 hasConceptScore W4316652511C127313418 @default.
- W4316652511 hasConceptScore W4316652511C127413603 @default.
- W4316652511 hasConceptScore W4316652511C141404830 @default.
- W4316652511 hasConceptScore W4316652511C144024400 @default.
- W4316652511 hasConceptScore W4316652511C154945302 @default.
- W4316652511 hasConceptScore W4316652511C16674752 @default.
- W4316652511 hasConceptScore W4316652511C187320778 @default.
- W4316652511 hasConceptScore W4316652511C197323446 @default.
- W4316652511 hasConceptScore W4316652511C205507351 @default.
- W4316652511 hasConceptScore W4316652511C25197100 @default.
- W4316652511 hasConceptScore W4316652511C2776257435 @default.
- W4316652511 hasConceptScore W4316652511C2778906150 @default.
- W4316652511 hasConceptScore W4316652511C2779304628 @default.
- W4316652511 hasConceptScore W4316652511C2987619373 @default.
- W4316652511 hasConceptScore W4316652511C31258907 @default.
- W4316652511 hasConceptScore W4316652511C36289849 @default.
- W4316652511 hasConceptScore W4316652511C41008148 @default.
- W4316652511 hasConceptScore W4316652511C50644808 @default.
- W4316652511 hasConceptScore W4316652511C50933969 @default.
- W4316652511 hasConceptScore W4316652511C59822182 @default.
- W4316652511 hasConceptScore W4316652511C66938386 @default.
- W4316652511 hasConceptScore W4316652511C78519656 @default.
- W4316652511 hasConceptScore W4316652511C86803240 @default.