Matches in SemOpenAlex for { <https://semopenalex.org/work/W4316658045> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4316658045 abstract "Artificial intelligence (AI) systems in medicine are one of the most important modern trends in global healthcare. Artificial intelligence technologies are fundamentally changing the global healthcare system, making it possible to radically rebuild the system of medical diagnostics while reducing healthcare costs. AI is actively used in research to develop methods for diagnosing coronary heart disease (CHD). There are different types of CHD. Before treating a disease, it is necessary to determine which class of diseases it belongs to. Based on the feature space of the disease, it is possible to classify the type of CHD. Machine learning algorithms can solve this problem. The k-nearest neighbors (KNN) algorithm is a simple, easy-to-implement supervised machine learning algorithm that can be used to solve classification problems. The dataset is the more important part of the supervised machine learning algorithm for training. Gathering data is the most important step in solving any supervised machine learning problem. But choosing more important part from the collected data is one of the tasks to be solved. The main purpose of this study is to select more useful parametric attributes from the dataset to obtain a high F1-score of CHD classification." @default.
- W4316658045 created "2023-01-17" @default.
- W4316658045 creator A5012624254 @default.
- W4316658045 creator A5031794885 @default.
- W4316658045 creator A5064868689 @default.
- W4316658045 date "2022-10-12" @default.
- W4316658045 modified "2023-09-27" @default.
- W4316658045 title "Artificial Intelligence in Medicine for Chronic Disease Classification Using Machine Learning" @default.
- W4316658045 cites W2113525559 @default.
- W4316658045 cites W2772920669 @default.
- W4316658045 cites W2794298852 @default.
- W4316658045 cites W2991232928 @default.
- W4316658045 cites W3037814947 @default.
- W4316658045 cites W3130763256 @default.
- W4316658045 cites W3134256530 @default.
- W4316658045 cites W3135090218 @default.
- W4316658045 cites W3135733163 @default.
- W4316658045 cites W3190188467 @default.
- W4316658045 cites W3215143552 @default.
- W4316658045 cites W4205826442 @default.
- W4316658045 cites W4206262363 @default.
- W4316658045 cites W3009497478 @default.
- W4316658045 doi "https://doi.org/10.1109/aict55583.2022.10013587" @default.
- W4316658045 hasPublicationYear "2022" @default.
- W4316658045 type Work @default.
- W4316658045 citedByCount "0" @default.
- W4316658045 crossrefType "proceedings-article" @default.
- W4316658045 hasAuthorship W4316658045A5012624254 @default.
- W4316658045 hasAuthorship W4316658045A5031794885 @default.
- W4316658045 hasAuthorship W4316658045A5064868689 @default.
- W4316658045 hasConcept C110083411 @default.
- W4316658045 hasConcept C119857082 @default.
- W4316658045 hasConcept C136389625 @default.
- W4316658045 hasConcept C138885662 @default.
- W4316658045 hasConcept C154945302 @default.
- W4316658045 hasConcept C160735492 @default.
- W4316658045 hasConcept C162324750 @default.
- W4316658045 hasConcept C2776401178 @default.
- W4316658045 hasConcept C2777212361 @default.
- W4316658045 hasConcept C41008148 @default.
- W4316658045 hasConcept C41895202 @default.
- W4316658045 hasConcept C50522688 @default.
- W4316658045 hasConcept C50644808 @default.
- W4316658045 hasConceptScore W4316658045C110083411 @default.
- W4316658045 hasConceptScore W4316658045C119857082 @default.
- W4316658045 hasConceptScore W4316658045C136389625 @default.
- W4316658045 hasConceptScore W4316658045C138885662 @default.
- W4316658045 hasConceptScore W4316658045C154945302 @default.
- W4316658045 hasConceptScore W4316658045C160735492 @default.
- W4316658045 hasConceptScore W4316658045C162324750 @default.
- W4316658045 hasConceptScore W4316658045C2776401178 @default.
- W4316658045 hasConceptScore W4316658045C2777212361 @default.
- W4316658045 hasConceptScore W4316658045C41008148 @default.
- W4316658045 hasConceptScore W4316658045C41895202 @default.
- W4316658045 hasConceptScore W4316658045C50522688 @default.
- W4316658045 hasConceptScore W4316658045C50644808 @default.
- W4316658045 hasFunder F4320328142 @default.
- W4316658045 hasLocation W43166580451 @default.
- W4316658045 hasOpenAccess W4316658045 @default.
- W4316658045 hasPrimaryLocation W43166580451 @default.
- W4316658045 hasRelatedWork W3162567751 @default.
- W4316658045 hasRelatedWork W3210156800 @default.
- W4316658045 hasRelatedWork W3210877509 @default.
- W4316658045 hasRelatedWork W4221088574 @default.
- W4316658045 hasRelatedWork W4226172683 @default.
- W4316658045 hasRelatedWork W4282839226 @default.
- W4316658045 hasRelatedWork W4283016678 @default.
- W4316658045 hasRelatedWork W4285260836 @default.
- W4316658045 hasRelatedWork W4316658045 @default.
- W4316658045 hasRelatedWork W1629725936 @default.
- W4316658045 isParatext "false" @default.
- W4316658045 isRetracted "false" @default.
- W4316658045 workType "article" @default.