Matches in SemOpenAlex for { <https://semopenalex.org/work/W4316658515> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4316658515 abstract "The human offline signs are the utmost extensively approved biometric verification procedures in colleges, industries, banking and various domain due to its easiness and exclusivity. Numerous computerized technologies have been established to predict the human offline signature for forgery detection. Because, the offline biometric identification system has expanded a histrionic movement. This paper Suggests a technique for offline sign identification system using image processing techniques. The proposed offline sign identification system has four stages. In the first stage, the pre-processing of human sig can be done. The pre-processing stage can be done by means of image processing concepts which includes color conversion and next smoothening technique can be done using Gaussian filter. And followed by noise removal method can be done using morphological operation. The second stage of proposed system is sign detection using various edge detection algorithm. In the third stage, extract the Average Intensity Sign (AIS) featurefrom detected sign image. Finally, signature verification system can be utilized for forgery detection using machine learning SVM techniques. The proposed sign identification method demonstrations that the real time experimental output has extreme achievement ratio. This proposed algorithm yields average accuracyof 98.91% in SVM (RBF) in 36 AIS features when associated to an SVM(polynomial) classifier." @default.
- W4316658515 created "2023-01-17" @default.
- W4316658515 creator A5002629738 @default.
- W4316658515 creator A5014666673 @default.
- W4316658515 creator A5044927722 @default.
- W4316658515 creator A5052244805 @default.
- W4316658515 creator A5077537310 @default.
- W4316658515 date "2022-11-24" @default.
- W4316658515 modified "2023-10-17" @default.
- W4316658515 title "Average Intensity Sign (AIS) Feature based Offline Signature Verification for Forgery Detection using Machine Learning" @default.
- W4316658515 cites W2142069714 @default.
- W4316658515 cites W2402796611 @default.
- W4316658515 cites W2581789109 @default.
- W4316658515 cites W2768121648 @default.
- W4316658515 cites W2788841786 @default.
- W4316658515 cites W2891287759 @default.
- W4316658515 cites W2997746639 @default.
- W4316658515 cites W3017312119 @default.
- W4316658515 cites W3022667344 @default.
- W4316658515 cites W3189245358 @default.
- W4316658515 cites W4200100671 @default.
- W4316658515 cites W4285202672 @default.
- W4316658515 cites W4285362286 @default.
- W4316658515 doi "https://doi.org/10.1109/icaiss55157.2022.10010812" @default.
- W4316658515 hasPublicationYear "2022" @default.
- W4316658515 type Work @default.
- W4316658515 citedByCount "2" @default.
- W4316658515 countsByYear W43166585152023 @default.
- W4316658515 crossrefType "proceedings-article" @default.
- W4316658515 hasAuthorship W4316658515A5002629738 @default.
- W4316658515 hasAuthorship W4316658515A5014666673 @default.
- W4316658515 hasAuthorship W4316658515A5044927722 @default.
- W4316658515 hasAuthorship W4316658515A5052244805 @default.
- W4316658515 hasAuthorship W4316658515A5077537310 @default.
- W4316658515 hasConcept C115961682 @default.
- W4316658515 hasConcept C116834253 @default.
- W4316658515 hasConcept C12267149 @default.
- W4316658515 hasConcept C153180895 @default.
- W4316658515 hasConcept C154945302 @default.
- W4316658515 hasConcept C184297639 @default.
- W4316658515 hasConcept C193536780 @default.
- W4316658515 hasConcept C2524010 @default.
- W4316658515 hasConcept C2779696439 @default.
- W4316658515 hasConcept C31972630 @default.
- W4316658515 hasConcept C33923547 @default.
- W4316658515 hasConcept C41008148 @default.
- W4316658515 hasConcept C52622490 @default.
- W4316658515 hasConcept C59822182 @default.
- W4316658515 hasConcept C86803240 @default.
- W4316658515 hasConcept C9417928 @default.
- W4316658515 hasConcept C95623464 @default.
- W4316658515 hasConceptScore W4316658515C115961682 @default.
- W4316658515 hasConceptScore W4316658515C116834253 @default.
- W4316658515 hasConceptScore W4316658515C12267149 @default.
- W4316658515 hasConceptScore W4316658515C153180895 @default.
- W4316658515 hasConceptScore W4316658515C154945302 @default.
- W4316658515 hasConceptScore W4316658515C184297639 @default.
- W4316658515 hasConceptScore W4316658515C193536780 @default.
- W4316658515 hasConceptScore W4316658515C2524010 @default.
- W4316658515 hasConceptScore W4316658515C2779696439 @default.
- W4316658515 hasConceptScore W4316658515C31972630 @default.
- W4316658515 hasConceptScore W4316658515C33923547 @default.
- W4316658515 hasConceptScore W4316658515C41008148 @default.
- W4316658515 hasConceptScore W4316658515C52622490 @default.
- W4316658515 hasConceptScore W4316658515C59822182 @default.
- W4316658515 hasConceptScore W4316658515C86803240 @default.
- W4316658515 hasConceptScore W4316658515C9417928 @default.
- W4316658515 hasConceptScore W4316658515C95623464 @default.
- W4316658515 hasLocation W43166585151 @default.
- W4316658515 hasOpenAccess W4316658515 @default.
- W4316658515 hasPrimaryLocation W43166585151 @default.
- W4316658515 hasRelatedWork W1524372968 @default.
- W4316658515 hasRelatedWork W17460865 @default.
- W4316658515 hasRelatedWork W2019582947 @default.
- W4316658515 hasRelatedWork W2076845124 @default.
- W4316658515 hasRelatedWork W2183964146 @default.
- W4316658515 hasRelatedWork W2372578044 @default.
- W4316658515 hasRelatedWork W2379932303 @default.
- W4316658515 hasRelatedWork W3147744369 @default.
- W4316658515 hasRelatedWork W3212688212 @default.
- W4316658515 hasRelatedWork W4300873085 @default.
- W4316658515 isParatext "false" @default.
- W4316658515 isRetracted "false" @default.
- W4316658515 workType "article" @default.