Matches in SemOpenAlex for { <https://semopenalex.org/work/W4316659316> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4316659316 abstract "Over the last few years, Deep Learning models have shown prominent results in medical image analysis especially to predict disease at the earlier stages. Since Deep Neural Network require more training data for better prediction, it needs more computational time for training. Transfer learning is a technique which uses the learned knowledge to perform the classification task by minimizing the number of training data and training time. To increase the accuracy of a single classifier, ensemble learning is used as a meta-learner. This research work implements a framework Ensemble Pre-Trained Deep Convolutional Neural Network using Resnet50, InceptionV3 and VGG19 pre-trained Convolutional Neural Network models with modified top layers to classify the disease present in the medical image datasets such as Covid X-Rays, Covid CT scans and Brain MRI with less computational time. Further, these models are combined using stacking and bagging ensemble approach to increase the accuracy of single classifier. The datasets are distributed as train, test and validation data and the models are trained and tested for four epochs. All the models are evaluated using validation data and the result shows that the ensemble learning approach increases the prediction accuracy when compared to the single models for all the datasets. In addition, this experiment reveals that the stacked model attains higher test accuracy of 99% for chest X-Ray images, 100% for chest CT scan images and 98% for brain MRI, compared to the bagged models." @default.
- W4316659316 created "2023-01-17" @default.
- W4316659316 creator A5057972591 @default.
- W4316659316 creator A5066316263 @default.
- W4316659316 date "2022-11-24" @default.
- W4316659316 modified "2023-10-18" @default.
- W4316659316 title "Ensemble Pre-Trained Deep Convolutional Neural Network Model for Classifying Medical Image Datasets" @default.
- W4316659316 cites W2054571464 @default.
- W4316659316 cites W2097117768 @default.
- W4316659316 cites W2106495731 @default.
- W4316659316 cites W2194775991 @default.
- W4316659316 cites W2973077827 @default.
- W4316659316 cites W3022592783 @default.
- W4316659316 cites W3027682070 @default.
- W4316659316 cites W3089094269 @default.
- W4316659316 cites W3091484480 @default.
- W4316659316 cites W3119213388 @default.
- W4316659316 cites W3128852039 @default.
- W4316659316 cites W3134696621 @default.
- W4316659316 cites W3198032304 @default.
- W4316659316 cites W3205934415 @default.
- W4316659316 cites W4214600173 @default.
- W4316659316 cites W4220656052 @default.
- W4316659316 doi "https://doi.org/10.1109/icaiss55157.2022.10011089" @default.
- W4316659316 hasPublicationYear "2022" @default.
- W4316659316 type Work @default.
- W4316659316 citedByCount "0" @default.
- W4316659316 crossrefType "proceedings-article" @default.
- W4316659316 hasAuthorship W4316659316A5057972591 @default.
- W4316659316 hasAuthorship W4316659316A5066316263 @default.
- W4316659316 hasConcept C108583219 @default.
- W4316659316 hasConcept C115961682 @default.
- W4316659316 hasConcept C119857082 @default.
- W4316659316 hasConcept C119898033 @default.
- W4316659316 hasConcept C150899416 @default.
- W4316659316 hasConcept C153180895 @default.
- W4316659316 hasConcept C154945302 @default.
- W4316659316 hasConcept C16910744 @default.
- W4316659316 hasConcept C199360897 @default.
- W4316659316 hasConcept C41008148 @default.
- W4316659316 hasConcept C45942800 @default.
- W4316659316 hasConcept C50644808 @default.
- W4316659316 hasConcept C75294576 @default.
- W4316659316 hasConcept C81363708 @default.
- W4316659316 hasConcept C95623464 @default.
- W4316659316 hasConceptScore W4316659316C108583219 @default.
- W4316659316 hasConceptScore W4316659316C115961682 @default.
- W4316659316 hasConceptScore W4316659316C119857082 @default.
- W4316659316 hasConceptScore W4316659316C119898033 @default.
- W4316659316 hasConceptScore W4316659316C150899416 @default.
- W4316659316 hasConceptScore W4316659316C153180895 @default.
- W4316659316 hasConceptScore W4316659316C154945302 @default.
- W4316659316 hasConceptScore W4316659316C16910744 @default.
- W4316659316 hasConceptScore W4316659316C199360897 @default.
- W4316659316 hasConceptScore W4316659316C41008148 @default.
- W4316659316 hasConceptScore W4316659316C45942800 @default.
- W4316659316 hasConceptScore W4316659316C50644808 @default.
- W4316659316 hasConceptScore W4316659316C75294576 @default.
- W4316659316 hasConceptScore W4316659316C81363708 @default.
- W4316659316 hasConceptScore W4316659316C95623464 @default.
- W4316659316 hasLocation W43166593161 @default.
- W4316659316 hasOpenAccess W4316659316 @default.
- W4316659316 hasPrimaryLocation W43166593161 @default.
- W4316659316 hasRelatedWork W2997709384 @default.
- W4316659316 hasRelatedWork W3018421652 @default.
- W4316659316 hasRelatedWork W3021430260 @default.
- W4316659316 hasRelatedWork W3108842824 @default.
- W4316659316 hasRelatedWork W3163102128 @default.
- W4316659316 hasRelatedWork W3189091156 @default.
- W4316659316 hasRelatedWork W4220996320 @default.
- W4316659316 hasRelatedWork W4288084884 @default.
- W4316659316 hasRelatedWork W4310989423 @default.
- W4316659316 hasRelatedWork W564581980 @default.
- W4316659316 isParatext "false" @default.
- W4316659316 isRetracted "false" @default.
- W4316659316 workType "article" @default.