Matches in SemOpenAlex for { <https://semopenalex.org/work/W4316659595> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4316659595 abstract "Data mining plays a significant role in information acquisition and effective information utilisation from big data. Many techniques are available for data mining, In many disciplines, including health care services, data reduction using rough set theory is a commonly utilized mathematical technique. In this paper, Rough Set Theory (RST) is applied to a patient's satisfaction survey to identify sets of critical attributes which are responsible for the patient's satisfaction. RST is a useful tool for data mining, however the data it extracts lacks efficiency and precision. This study proposes a novel approach to tackle this problem, combining Rough Set Theory, Data Envelopment Analysis (DEA), and Artificial Neural Networks (ANN). The Data Envelopment Analysis (DEA) is the leading approach used to find the dependency of output variables on input variables. These powerful instruments Through the use of Artificial Neural Network (ANN) results, RST and DEA are utilised to determine the effectiveness of reductions. Based on cross-validation of ANN accuracy of forecasting is determined. Maximizing patient satisfaction is an important goal of Health care organizations. Patients' feedback helps them to identify the ways to improve their working methods which transforms into better care and happier patients. In this paper, Rough Set Theory is applied to a patient's satisfaction survey to identify sets of critical attributes which are responsible for the patient's satisfaction. DEA & ANN give the best set of critical attributes based on their efficiency." @default.
- W4316659595 created "2023-01-17" @default.
- W4316659595 creator A5001523938 @default.
- W4316659595 creator A5050550171 @default.
- W4316659595 creator A5064915624 @default.
- W4316659595 date "2022-08-26" @default.
- W4316659595 modified "2023-10-02" @default.
- W4316659595 title "A Hybrid Approach: Rough Set, Artificial Neural Networking & Data Envelopment Analysis on patient's satisfaction in healthcare organization" @default.
- W4316659595 cites W2004122973 @default.
- W4316659595 cites W2013992973 @default.
- W4316659595 cites W2060705049 @default.
- W4316659595 cites W2076452041 @default.
- W4316659595 cites W2153715466 @default.
- W4316659595 cites W2285225962 @default.
- W4316659595 cites W2551034023 @default.
- W4316659595 cites W2585905190 @default.
- W4316659595 cites W2893117623 @default.
- W4316659595 cites W2898907894 @default.
- W4316659595 cites W2962820560 @default.
- W4316659595 cites W3021900630 @default.
- W4316659595 cites W4300395170 @default.
- W4316659595 doi "https://doi.org/10.1109/iccubea54992.2022.10010779" @default.
- W4316659595 hasPublicationYear "2022" @default.
- W4316659595 type Work @default.
- W4316659595 citedByCount "0" @default.
- W4316659595 crossrefType "proceedings-article" @default.
- W4316659595 hasAuthorship W4316659595A5001523938 @default.
- W4316659595 hasAuthorship W4316659595A5050550171 @default.
- W4316659595 hasAuthorship W4316659595A5064915624 @default.
- W4316659595 hasConcept C111012933 @default.
- W4316659595 hasConcept C119857082 @default.
- W4316659595 hasConcept C124101348 @default.
- W4316659595 hasConcept C126255220 @default.
- W4316659595 hasConcept C154945302 @default.
- W4316659595 hasConcept C160735492 @default.
- W4316659595 hasConcept C162324750 @default.
- W4316659595 hasConcept C177264268 @default.
- W4316659595 hasConcept C199360897 @default.
- W4316659595 hasConcept C22088475 @default.
- W4316659595 hasConcept C33923547 @default.
- W4316659595 hasConcept C41008148 @default.
- W4316659595 hasConcept C50522688 @default.
- W4316659595 hasConcept C50644808 @default.
- W4316659595 hasConcept C58489278 @default.
- W4316659595 hasConceptScore W4316659595C111012933 @default.
- W4316659595 hasConceptScore W4316659595C119857082 @default.
- W4316659595 hasConceptScore W4316659595C124101348 @default.
- W4316659595 hasConceptScore W4316659595C126255220 @default.
- W4316659595 hasConceptScore W4316659595C154945302 @default.
- W4316659595 hasConceptScore W4316659595C160735492 @default.
- W4316659595 hasConceptScore W4316659595C162324750 @default.
- W4316659595 hasConceptScore W4316659595C177264268 @default.
- W4316659595 hasConceptScore W4316659595C199360897 @default.
- W4316659595 hasConceptScore W4316659595C22088475 @default.
- W4316659595 hasConceptScore W4316659595C33923547 @default.
- W4316659595 hasConceptScore W4316659595C41008148 @default.
- W4316659595 hasConceptScore W4316659595C50522688 @default.
- W4316659595 hasConceptScore W4316659595C50644808 @default.
- W4316659595 hasConceptScore W4316659595C58489278 @default.
- W4316659595 hasLocation W43166595951 @default.
- W4316659595 hasOpenAccess W4316659595 @default.
- W4316659595 hasPrimaryLocation W43166595951 @default.
- W4316659595 hasRelatedWork W1492482484 @default.
- W4316659595 hasRelatedWork W1560065375 @default.
- W4316659595 hasRelatedWork W1585083011 @default.
- W4316659595 hasRelatedWork W2005484491 @default.
- W4316659595 hasRelatedWork W2113005528 @default.
- W4316659595 hasRelatedWork W2126880743 @default.
- W4316659595 hasRelatedWork W2350386639 @default.
- W4316659595 hasRelatedWork W2360523936 @default.
- W4316659595 hasRelatedWork W2362450124 @default.
- W4316659595 hasRelatedWork W2375011122 @default.
- W4316659595 isParatext "false" @default.
- W4316659595 isRetracted "false" @default.
- W4316659595 workType "article" @default.