Matches in SemOpenAlex for { <https://semopenalex.org/work/W4316660923> ?p ?o ?g. }
- W4316660923 endingPage "7050" @default.
- W4316660923 startingPage "7035" @default.
- W4316660923 abstract "The hybrid-electric powertrain currently used in Formula 1 race cars draws its energy from the car's fuel tank and battery. The usable battery size is limited, and refueling during a race is forbidden by the regulations of the Formula 1 race series. From a strategic point of view, lap-by-lap targets for the fuel and battery consumption must be chosen and imposed on the energy management controller of the car. This task is non-trivial due to the influence of the on-board fuel mass on the achievable lap time, as well as the cross-couplings between the electric and the combustion part of the powertrain. A systematic approach is thus required to compute the energy allocation strategy that minimizes the total race time. In this paper, we devise an optimization framework in the form of a non-linear program, yielding the optimal battery and fuel consumption targets for each lap of the race. The approach is based on maps that capture the achievable lap time as a function of car mass and allocated battery and fuel energy. These maps are generated beforehand with a model-based single-lap optimization framework and fitted using artificial neural network techniques. To showcase the approach, we present three case studies: First, we compare the optimal strategy to a heuristic method. The improvement of <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink><tex-math notation=LaTeX>$text{2 s}$</tex-math></inline-formula> over the entire race is substantial, given that the difference only lies in the energy allocation, but not in the overall consumption. It underlines the importance of optimizing the energy allocation. Second, we leverage the framework to compute the optimal fuel load at the beginning of the race. Finally, we apply the developed non-linear program in a shrinking-horizon fashion. Our simulation results show that the resulting model predictive controller correctly reacts to disturbances that frequently occur during a race." @default.
- W4316660923 created "2023-01-17" @default.
- W4316660923 creator A5005844687 @default.
- W4316660923 creator A5031548808 @default.
- W4316660923 creator A5032544651 @default.
- W4316660923 creator A5054716788 @default.
- W4316660923 creator A5088885424 @default.
- W4316660923 date "2023-06-01" @default.
- W4316660923 modified "2023-09-29" @default.
- W4316660923 title "Minimum-Race-Time Energy Allocation Strategies for the Hybrid-Electric Formula 1 Power Unit" @default.
- W4316660923 cites W1527719472 @default.
- W4316660923 cites W1562460111 @default.
- W4316660923 cites W1963788580 @default.
- W4316660923 cites W1965559057 @default.
- W4316660923 cites W1969705022 @default.
- W4316660923 cites W1976729497 @default.
- W4316660923 cites W1987006882 @default.
- W4316660923 cites W1987819112 @default.
- W4316660923 cites W1993874786 @default.
- W4316660923 cites W2015729214 @default.
- W4316660923 cites W2051048551 @default.
- W4316660923 cites W2118412444 @default.
- W4316660923 cites W2123871098 @default.
- W4316660923 cites W2127778840 @default.
- W4316660923 cites W2136209220 @default.
- W4316660923 cites W2164686139 @default.
- W4316660923 cites W2165579389 @default.
- W4316660923 cites W2592808691 @default.
- W4316660923 cites W2593097710 @default.
- W4316660923 cites W2792915789 @default.
- W4316660923 cites W2842089854 @default.
- W4316660923 cites W2904209466 @default.
- W4316660923 cites W2908560069 @default.
- W4316660923 cites W2948579154 @default.
- W4316660923 cites W2962963881 @default.
- W4316660923 cites W2974922583 @default.
- W4316660923 cites W2991446929 @default.
- W4316660923 cites W2996927234 @default.
- W4316660923 cites W3014282671 @default.
- W4316660923 cites W3025119854 @default.
- W4316660923 cites W3036919396 @default.
- W4316660923 cites W3046613104 @default.
- W4316660923 cites W3085009486 @default.
- W4316660923 cites W3097391730 @default.
- W4316660923 cites W3107931519 @default.
- W4316660923 cites W3125448683 @default.
- W4316660923 cites W3136445792 @default.
- W4316660923 cites W3157106539 @default.
- W4316660923 cites W3164696465 @default.
- W4316660923 cites W3212173201 @default.
- W4316660923 cites W3214504040 @default.
- W4316660923 cites W4205163234 @default.
- W4316660923 cites W4285139290 @default.
- W4316660923 cites W4285145967 @default.
- W4316660923 cites W4300825532 @default.
- W4316660923 cites W4307072704 @default.
- W4316660923 doi "https://doi.org/10.1109/tvt.2023.3237388" @default.
- W4316660923 hasPublicationYear "2023" @default.
- W4316660923 type Work @default.
- W4316660923 citedByCount "0" @default.
- W4316660923 crossrefType "journal-article" @default.
- W4316660923 hasAuthorship W4316660923A5005844687 @default.
- W4316660923 hasAuthorship W4316660923A5031548808 @default.
- W4316660923 hasAuthorship W4316660923A5032544651 @default.
- W4316660923 hasAuthorship W4316660923A5054716788 @default.
- W4316660923 hasAuthorship W4316660923A5088885424 @default.
- W4316660923 hasBestOaLocation W43166609232 @default.
- W4316660923 hasConcept C121332964 @default.
- W4316660923 hasConcept C126255220 @default.
- W4316660923 hasConcept C127413603 @default.
- W4316660923 hasConcept C144171764 @default.
- W4316660923 hasConcept C163258240 @default.
- W4316660923 hasConcept C171146098 @default.
- W4316660923 hasConcept C173801870 @default.
- W4316660923 hasConcept C203479927 @default.
- W4316660923 hasConcept C33923547 @default.
- W4316660923 hasConcept C41008148 @default.
- W4316660923 hasConcept C45882903 @default.
- W4316660923 hasConcept C555008776 @default.
- W4316660923 hasConcept C62520636 @default.
- W4316660923 hasConcept C6557445 @default.
- W4316660923 hasConcept C76047896 @default.
- W4316660923 hasConcept C86803240 @default.
- W4316660923 hasConcept C97355855 @default.
- W4316660923 hasConceptScore W4316660923C121332964 @default.
- W4316660923 hasConceptScore W4316660923C126255220 @default.
- W4316660923 hasConceptScore W4316660923C127413603 @default.
- W4316660923 hasConceptScore W4316660923C144171764 @default.
- W4316660923 hasConceptScore W4316660923C163258240 @default.
- W4316660923 hasConceptScore W4316660923C171146098 @default.
- W4316660923 hasConceptScore W4316660923C173801870 @default.
- W4316660923 hasConceptScore W4316660923C203479927 @default.
- W4316660923 hasConceptScore W4316660923C33923547 @default.
- W4316660923 hasConceptScore W4316660923C41008148 @default.
- W4316660923 hasConceptScore W4316660923C45882903 @default.
- W4316660923 hasConceptScore W4316660923C555008776 @default.
- W4316660923 hasConceptScore W4316660923C62520636 @default.
- W4316660923 hasConceptScore W4316660923C6557445 @default.