Matches in SemOpenAlex for { <https://semopenalex.org/work/W4316661089> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4316661089 endingPage "5" @default.
- W4316661089 startingPage "1" @default.
- W4316661089 abstract "The training of deep networks for hyperspectral target detection (HTD) is usually confronted with the problem of limited samples and in extreme cases, there might be only one target sample available. To address this challenge, we propose a novel approach with dual networks in this letter. First, a training set that is not fully accurate but representative enough regarding both targets and backgrounds is built through predetection and clustering. Then, two types of neural networks, that is, one generative adversarial network (GAN) and one convolutional neural network (CNN), which focus on spectral and spatial features of hyperspectral images (HSIs), are utilized for target detection. After that, the results of the two networks are fused, with the final detection result obtained. Experiments on real HSIs indicate that the proposed approach manages to perform HTD with only one target sample and is able to yield a more robust detection performance compared to other approaches." @default.
- W4316661089 created "2023-01-17" @default.
- W4316661089 creator A5040328543 @default.
- W4316661089 creator A5067207818 @default.
- W4316661089 creator A5073846664 @default.
- W4316661089 creator A5084735279 @default.
- W4316661089 date "2023-01-01" @default.
- W4316661089 modified "2023-10-05" @default.
- W4316661089 title "Robust Signature-Based Hyperspectral Target Detection Using Dual Networks" @default.
- W4316661089 cites W1899348529 @default.
- W4316661089 cites W2017014096 @default.
- W4316661089 cites W2154236340 @default.
- W4316661089 cites W2163957348 @default.
- W4316661089 cites W2593414223 @default.
- W4316661089 cites W2768570908 @default.
- W4316661089 cites W2772028350 @default.
- W4316661089 cites W2901671744 @default.
- W4316661089 cites W2922095228 @default.
- W4316661089 cites W2948763898 @default.
- W4316661089 cites W2963351448 @default.
- W4316661089 cites W3087883793 @default.
- W4316661089 cites W4225688999 @default.
- W4316661089 cites W625476304 @default.
- W4316661089 doi "https://doi.org/10.1109/lgrs.2023.3237746" @default.
- W4316661089 hasPublicationYear "2023" @default.
- W4316661089 type Work @default.
- W4316661089 citedByCount "2" @default.
- W4316661089 countsByYear W43166610892023 @default.
- W4316661089 crossrefType "journal-article" @default.
- W4316661089 hasAuthorship W4316661089A5040328543 @default.
- W4316661089 hasAuthorship W4316661089A5067207818 @default.
- W4316661089 hasAuthorship W4316661089A5073846664 @default.
- W4316661089 hasAuthorship W4316661089A5084735279 @default.
- W4316661089 hasConcept C108583219 @default.
- W4316661089 hasConcept C120665830 @default.
- W4316661089 hasConcept C121332964 @default.
- W4316661089 hasConcept C124952713 @default.
- W4316661089 hasConcept C142362112 @default.
- W4316661089 hasConcept C153180895 @default.
- W4316661089 hasConcept C154945302 @default.
- W4316661089 hasConcept C159078339 @default.
- W4316661089 hasConcept C177264268 @default.
- W4316661089 hasConcept C185592680 @default.
- W4316661089 hasConcept C192209626 @default.
- W4316661089 hasConcept C198531522 @default.
- W4316661089 hasConcept C199360897 @default.
- W4316661089 hasConcept C2776151529 @default.
- W4316661089 hasConcept C2780980858 @default.
- W4316661089 hasConcept C2988773926 @default.
- W4316661089 hasConcept C41008148 @default.
- W4316661089 hasConcept C43617362 @default.
- W4316661089 hasConcept C73555534 @default.
- W4316661089 hasConcept C81363708 @default.
- W4316661089 hasConceptScore W4316661089C108583219 @default.
- W4316661089 hasConceptScore W4316661089C120665830 @default.
- W4316661089 hasConceptScore W4316661089C121332964 @default.
- W4316661089 hasConceptScore W4316661089C124952713 @default.
- W4316661089 hasConceptScore W4316661089C142362112 @default.
- W4316661089 hasConceptScore W4316661089C153180895 @default.
- W4316661089 hasConceptScore W4316661089C154945302 @default.
- W4316661089 hasConceptScore W4316661089C159078339 @default.
- W4316661089 hasConceptScore W4316661089C177264268 @default.
- W4316661089 hasConceptScore W4316661089C185592680 @default.
- W4316661089 hasConceptScore W4316661089C192209626 @default.
- W4316661089 hasConceptScore W4316661089C198531522 @default.
- W4316661089 hasConceptScore W4316661089C199360897 @default.
- W4316661089 hasConceptScore W4316661089C2776151529 @default.
- W4316661089 hasConceptScore W4316661089C2780980858 @default.
- W4316661089 hasConceptScore W4316661089C2988773926 @default.
- W4316661089 hasConceptScore W4316661089C41008148 @default.
- W4316661089 hasConceptScore W4316661089C43617362 @default.
- W4316661089 hasConceptScore W4316661089C73555534 @default.
- W4316661089 hasConceptScore W4316661089C81363708 @default.
- W4316661089 hasFunder F4320321001 @default.
- W4316661089 hasLocation W43166610891 @default.
- W4316661089 hasOpenAccess W4316661089 @default.
- W4316661089 hasPrimaryLocation W43166610891 @default.
- W4316661089 hasRelatedWork W2425127026 @default.
- W4316661089 hasRelatedWork W2731899572 @default.
- W4316661089 hasRelatedWork W2999805992 @default.
- W4316661089 hasRelatedWork W3116150086 @default.
- W4316661089 hasRelatedWork W3126336475 @default.
- W4316661089 hasRelatedWork W3133861977 @default.
- W4316661089 hasRelatedWork W4200173597 @default.
- W4316661089 hasRelatedWork W4311401716 @default.
- W4316661089 hasRelatedWork W4312417841 @default.
- W4316661089 hasRelatedWork W4321369474 @default.
- W4316661089 hasVolume "20" @default.
- W4316661089 isParatext "false" @default.
- W4316661089 isRetracted "false" @default.
- W4316661089 workType "article" @default.