Matches in SemOpenAlex for { <https://semopenalex.org/work/W4316662968> ?p ?o ?g. }
- W4316662968 abstract "The bold vision of AI-driven pervasive physiological monitoring, through the proliferation of off-the-shelf wearables that began a decade ago, has created immense opportunities to extract actionable information for precision medicine. These AI algorithms model the input-output relationships of a system that, in many cases, exhibits complex nature and personalization requirements. A particular example is cuffless blood pressure estimation using wearable bioimpedance. However, these algorithms need to be trained with a significant amount of ground truth data. In the context of biomedical applications, collecting ground truth data, particularly at the personalized level is challenging, burdensome, and in some cases infeasible. Our objective is to establish physics-informed neural network (PINN) models for physiological time series data that would reduce reliance on ground truth information. We achieve this by building Taylor's approximation for the gradually changing known cardiovascular relationships between input and output (e.g., sensor measurements to blood pressure) and incorporating this approximation into our proposed neural network training. The effectiveness of the framework is demonstrated through a case study: continuous cuffless BP estimation from time series bioimpedance data. We show that by using PINNs over the state-of-the-art time series regression models tested on the same datasets, we retain a high correlation (systolic: 0.90, diastolic: 0.89) and low error (systolic: 1.3 ± 7.6 mmHg, diastolic: 0.6 ± 6.4 mmHg) while reducing the amount of ground truth training data on average by a factor of 15. This could be helpful in developing future AI algorithms to help interpret pervasive physiologic data using minimal amount of training data." @default.
- W4316662968 created "2023-01-17" @default.
- W4316662968 creator A5011769350 @default.
- W4316662968 creator A5037480222 @default.
- W4316662968 creator A5045347061 @default.
- W4316662968 creator A5088741752 @default.
- W4316662968 date "2023-01-16" @default.
- W4316662968 modified "2023-09-24" @default.
- W4316662968 title "Physics-Informed Neural Networks for Modeling Physiological Time Series: A Case Study with Continuous Blood Pressure" @default.
- W4316662968 cites W1569135918 @default.
- W4316662968 cites W1965051361 @default.
- W4316662968 cites W1991233913 @default.
- W4316662968 cites W2004460893 @default.
- W4316662968 cites W2015210790 @default.
- W4316662968 cites W2017851551 @default.
- W4316662968 cites W2022296464 @default.
- W4316662968 cites W2029315440 @default.
- W4316662968 cites W2076352570 @default.
- W4316662968 cites W2082543985 @default.
- W4316662968 cites W2092038187 @default.
- W4316662968 cites W2107188174 @default.
- W4316662968 cites W2139390955 @default.
- W4316662968 cites W2143620016 @default.
- W4316662968 cites W2325824081 @default.
- W4316662968 cites W2431637923 @default.
- W4316662968 cites W2521022022 @default.
- W4316662968 cites W2521689493 @default.
- W4316662968 cites W2552808038 @default.
- W4316662968 cites W2576387397 @default.
- W4316662968 cites W2591704465 @default.
- W4316662968 cites W2790385199 @default.
- W4316662968 cites W2791594022 @default.
- W4316662968 cites W2810131621 @default.
- W4316662968 cites W2811365258 @default.
- W4316662968 cites W2888926850 @default.
- W4316662968 cites W2905374123 @default.
- W4316662968 cites W2916816078 @default.
- W4316662968 cites W2943626752 @default.
- W4316662968 cites W2961917496 @default.
- W4316662968 cites W2977231839 @default.
- W4316662968 cites W3005348902 @default.
- W4316662968 cites W3026517877 @default.
- W4316662968 cites W3042891861 @default.
- W4316662968 cites W3047559810 @default.
- W4316662968 cites W3131882936 @default.
- W4316662968 cites W3155015885 @default.
- W4316662968 cites W3168015048 @default.
- W4316662968 cites W3196743513 @default.
- W4316662968 cites W4200590197 @default.
- W4316662968 cites W4206379192 @default.
- W4316662968 cites W4283167194 @default.
- W4316662968 cites W4288424909 @default.
- W4316662968 doi "https://doi.org/10.21203/rs.3.rs-2423200/v1" @default.
- W4316662968 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36711741" @default.
- W4316662968 hasPublicationYear "2023" @default.
- W4316662968 type Work @default.
- W4316662968 citedByCount "0" @default.
- W4316662968 crossrefType "posted-content" @default.
- W4316662968 hasAuthorship W4316662968A5011769350 @default.
- W4316662968 hasAuthorship W4316662968A5037480222 @default.
- W4316662968 hasAuthorship W4316662968A5045347061 @default.
- W4316662968 hasAuthorship W4316662968A5088741752 @default.
- W4316662968 hasBestOaLocation W43166629681 @default.
- W4316662968 hasConcept C11413529 @default.
- W4316662968 hasConcept C119857082 @default.
- W4316662968 hasConcept C121687571 @default.
- W4316662968 hasConcept C124101348 @default.
- W4316662968 hasConcept C126322002 @default.
- W4316662968 hasConcept C136764020 @default.
- W4316662968 hasConcept C143724316 @default.
- W4316662968 hasConcept C146849305 @default.
- W4316662968 hasConcept C149635348 @default.
- W4316662968 hasConcept C150594956 @default.
- W4316662968 hasConcept C151406439 @default.
- W4316662968 hasConcept C151730666 @default.
- W4316662968 hasConcept C154945302 @default.
- W4316662968 hasConcept C183003079 @default.
- W4316662968 hasConcept C2779343474 @default.
- W4316662968 hasConcept C41008148 @default.
- W4316662968 hasConcept C50644808 @default.
- W4316662968 hasConcept C71924100 @default.
- W4316662968 hasConcept C84393581 @default.
- W4316662968 hasConcept C86803240 @default.
- W4316662968 hasConceptScore W4316662968C11413529 @default.
- W4316662968 hasConceptScore W4316662968C119857082 @default.
- W4316662968 hasConceptScore W4316662968C121687571 @default.
- W4316662968 hasConceptScore W4316662968C124101348 @default.
- W4316662968 hasConceptScore W4316662968C126322002 @default.
- W4316662968 hasConceptScore W4316662968C136764020 @default.
- W4316662968 hasConceptScore W4316662968C143724316 @default.
- W4316662968 hasConceptScore W4316662968C146849305 @default.
- W4316662968 hasConceptScore W4316662968C149635348 @default.
- W4316662968 hasConceptScore W4316662968C150594956 @default.
- W4316662968 hasConceptScore W4316662968C151406439 @default.
- W4316662968 hasConceptScore W4316662968C151730666 @default.
- W4316662968 hasConceptScore W4316662968C154945302 @default.
- W4316662968 hasConceptScore W4316662968C183003079 @default.
- W4316662968 hasConceptScore W4316662968C2779343474 @default.
- W4316662968 hasConceptScore W4316662968C41008148 @default.
- W4316662968 hasConceptScore W4316662968C50644808 @default.