Matches in SemOpenAlex for { <https://semopenalex.org/work/W4316664561> ?p ?o ?g. }
- W4316664561 endingPage "519" @default.
- W4316664561 startingPage "519" @default.
- W4316664561 abstract "Urban tree canopy (UTC) area is an important index for evaluating the urban ecological environment; the very high resolution (VHR) images are essential for improving urban tree canopy survey efficiency. However, the traditional image classification methods often show low robustness when extracting complex objects from VHR images, with insufficient feature learning, object edge blur and noise. Our objective was to develop a repeatable method—superpixel-enhanced deep neural forests (SDNF)—to detect the UTC distribution from VHR images. Eight data expansion methods was used to construct the UTC training sample sets, four sample size gradients were set to test the optimal sample size selection of SDNF method, and the best training times with the shortest model convergence and time-consumption was selected. The accuracy performance of SDNF was tested by three indexes: F1 score (F1), intersection over union (IoU) and overall accuracy (OA). To compare the detection accuracy of SDNF, the random forest (RF) was used to conduct a control experiment with synchronization. Compared with the RF model, SDNF always performed better in OA under the same training sample size. SDNF had more epoch times than RF, converged at the 200 and 160 epoch, respectively. When SDNF and RF are kept in a convergence state, the training accuracy is 95.16% and 83.16%, and the verification accuracy is 94.87% and 87.73%, respectively. The OA of SDNF improved 10.00%, reaching 89.00% compared with the RF model. This study proves the effectiveness of SDNF in UTC detection based on VHR images. It can provide a more accurate solution for UTC detection in urban environmental monitoring, urban forest resource survey, and national forest city assessment." @default.
- W4316664561 created "2023-01-17" @default.
- W4316664561 creator A5009977150 @default.
- W4316664561 creator A5021000909 @default.
- W4316664561 creator A5041025410 @default.
- W4316664561 creator A5062119142 @default.
- W4316664561 creator A5063498611 @default.
- W4316664561 creator A5066056560 @default.
- W4316664561 creator A5072173666 @default.
- W4316664561 creator A5066357090 @default.
- W4316664561 date "2023-01-15" @default.
- W4316664561 modified "2023-09-30" @default.
- W4316664561 title "Very High Resolution Images and Superpixel-Enhanced Deep Neural Forest Promote Urban Tree Canopy Detection" @default.
- W4316664561 cites W2003317133 @default.
- W4316664561 cites W2063396028 @default.
- W4316664561 cites W2073842936 @default.
- W4316664561 cites W2078150713 @default.
- W4316664561 cites W2118246710 @default.
- W4316664561 cites W2220384803 @default.
- W4316664561 cites W2297729576 @default.
- W4316664561 cites W2343061342 @default.
- W4316664561 cites W2412782625 @default.
- W4316664561 cites W2786055572 @default.
- W4316664561 cites W2789500510 @default.
- W4316664561 cites W2790696469 @default.
- W4316664561 cites W2803946774 @default.
- W4316664561 cites W2810004461 @default.
- W4316664561 cites W2944917232 @default.
- W4316664561 cites W2951982261 @default.
- W4316664561 cites W2990392801 @default.
- W4316664561 cites W3011323305 @default.
- W4316664561 cites W3015756600 @default.
- W4316664561 cites W3025172026 @default.
- W4316664561 cites W3033496625 @default.
- W4316664561 cites W3043758939 @default.
- W4316664561 cites W3044075475 @default.
- W4316664561 cites W3179323839 @default.
- W4316664561 cites W3183480578 @default.
- W4316664561 cites W4229457118 @default.
- W4316664561 cites W4311261688 @default.
- W4316664561 cites W631895740 @default.
- W4316664561 doi "https://doi.org/10.3390/rs15020519" @default.
- W4316664561 hasPublicationYear "2023" @default.
- W4316664561 type Work @default.
- W4316664561 citedByCount "4" @default.
- W4316664561 countsByYear W43166645612023 @default.
- W4316664561 crossrefType "journal-article" @default.
- W4316664561 hasAuthorship W4316664561A5009977150 @default.
- W4316664561 hasAuthorship W4316664561A5021000909 @default.
- W4316664561 hasAuthorship W4316664561A5041025410 @default.
- W4316664561 hasAuthorship W4316664561A5062119142 @default.
- W4316664561 hasAuthorship W4316664561A5063498611 @default.
- W4316664561 hasAuthorship W4316664561A5066056560 @default.
- W4316664561 hasAuthorship W4316664561A5066357090 @default.
- W4316664561 hasAuthorship W4316664561A5072173666 @default.
- W4316664561 hasBestOaLocation W43166645611 @default.
- W4316664561 hasConcept C101000010 @default.
- W4316664561 hasConcept C104317684 @default.
- W4316664561 hasConcept C153180895 @default.
- W4316664561 hasConcept C154945302 @default.
- W4316664561 hasConcept C166957645 @default.
- W4316664561 hasConcept C169258074 @default.
- W4316664561 hasConcept C185592680 @default.
- W4316664561 hasConcept C205649164 @default.
- W4316664561 hasConcept C39807119 @default.
- W4316664561 hasConcept C41008148 @default.
- W4316664561 hasConcept C50644808 @default.
- W4316664561 hasConcept C55493867 @default.
- W4316664561 hasConcept C62649853 @default.
- W4316664561 hasConcept C63479239 @default.
- W4316664561 hasConceptScore W4316664561C101000010 @default.
- W4316664561 hasConceptScore W4316664561C104317684 @default.
- W4316664561 hasConceptScore W4316664561C153180895 @default.
- W4316664561 hasConceptScore W4316664561C154945302 @default.
- W4316664561 hasConceptScore W4316664561C166957645 @default.
- W4316664561 hasConceptScore W4316664561C169258074 @default.
- W4316664561 hasConceptScore W4316664561C185592680 @default.
- W4316664561 hasConceptScore W4316664561C205649164 @default.
- W4316664561 hasConceptScore W4316664561C39807119 @default.
- W4316664561 hasConceptScore W4316664561C41008148 @default.
- W4316664561 hasConceptScore W4316664561C50644808 @default.
- W4316664561 hasConceptScore W4316664561C55493867 @default.
- W4316664561 hasConceptScore W4316664561C62649853 @default.
- W4316664561 hasConceptScore W4316664561C63479239 @default.
- W4316664561 hasFunder F4320321001 @default.
- W4316664561 hasIssue "2" @default.
- W4316664561 hasLocation W43166645611 @default.
- W4316664561 hasLocation W43166645612 @default.
- W4316664561 hasOpenAccess W4316664561 @default.
- W4316664561 hasPrimaryLocation W43166645611 @default.
- W4316664561 hasRelatedWork W1975989939 @default.
- W4316664561 hasRelatedWork W1986010464 @default.
- W4316664561 hasRelatedWork W1998002922 @default.
- W4316664561 hasRelatedWork W2004959106 @default.
- W4316664561 hasRelatedWork W2130624596 @default.
- W4316664561 hasRelatedWork W2165608115 @default.
- W4316664561 hasRelatedWork W2898959878 @default.
- W4316664561 hasRelatedWork W2964383635 @default.