Matches in SemOpenAlex for { <https://semopenalex.org/work/W4316804852> ?p ?o ?g. }
- W4316804852 endingPage "499" @default.
- W4316804852 startingPage "499" @default.
- W4316804852 abstract "Wind energy has been widely used in recent decades to achieve green and sustainable development. However, wind speed prediction in wind farm clusters remains one of the less studied areas. Spatial features of cluster data of wind speed are not fully exploited in existing work. In addition, missing data, which dramatically deteriorate the forecasting performance, have not been addressed thoroughly. To tackle these tough issues, a new method, termed input set based on wind farm cluster data–deep extreme learning machine (IWC-DELM), is developed herein. This model builds an input set based on IWC, which takes advantage of the historical data of relevant wind farms to utilize the spatial characteristics of wind speed sequences within such wind farm clusters. Finally, wind speed prediction is obtained after the training of DELM, which results in a better performance in forecasting accuracy and training speed. The structure IWC, complete with the multidimensional average method (MDAM), is also beneficial to make up the missing data, thus enhancing data robustness in comparison to the traditional method of the moving average approach (MAA). Experiments are conducted with some real-world data, and the results of gate recurrent unit (GRU), long- and short-term memory (LSTM) and sliced recurrent neural networks (SRNNs) are also taken for comparison. These comparative tests clearly verify the superiority of IWC-DELM, whose accuracy and efficiency both rank at the top among the four candidates." @default.
- W4316804852 created "2023-01-17" @default.
- W4316804852 creator A5034029120 @default.
- W4316804852 creator A5053181184 @default.
- W4316804852 creator A5053628439 @default.
- W4316804852 creator A5064518250 @default.
- W4316804852 creator A5079654207 @default.
- W4316804852 date "2023-01-17" @default.
- W4316804852 modified "2023-09-26" @default.
- W4316804852 title "A Novel and Robust Wind Speed Prediction Method Based on Spatial Features of Wind Farm Cluster" @default.
- W4316804852 cites W1525510058 @default.
- W4316804852 cites W2022461922 @default.
- W4316804852 cites W2025697666 @default.
- W4316804852 cites W2094885065 @default.
- W4316804852 cites W2111072639 @default.
- W4316804852 cites W2114471530 @default.
- W4316804852 cites W2153263933 @default.
- W4316804852 cites W2205533964 @default.
- W4316804852 cites W2290759223 @default.
- W4316804852 cites W2355825618 @default.
- W4316804852 cites W2413927587 @default.
- W4316804852 cites W2511683089 @default.
- W4316804852 cites W2790114420 @default.
- W4316804852 cites W2903162817 @default.
- W4316804852 cites W2913872388 @default.
- W4316804852 cites W2924950036 @default.
- W4316804852 cites W2984455290 @default.
- W4316804852 cites W3005001477 @default.
- W4316804852 cites W3005289256 @default.
- W4316804852 cites W3043853857 @default.
- W4316804852 cites W3106647807 @default.
- W4316804852 cites W3131110071 @default.
- W4316804852 cites W3137520600 @default.
- W4316804852 cites W3162952159 @default.
- W4316804852 cites W3171662000 @default.
- W4316804852 cites W3185198287 @default.
- W4316804852 cites W3195017936 @default.
- W4316804852 cites W3200304500 @default.
- W4316804852 cites W3201465610 @default.
- W4316804852 cites W3203852193 @default.
- W4316804852 cites W4281626910 @default.
- W4316804852 cites W4281764923 @default.
- W4316804852 cites W4282570850 @default.
- W4316804852 cites W4292690740 @default.
- W4316804852 doi "https://doi.org/10.3390/math11030499" @default.
- W4316804852 hasPublicationYear "2023" @default.
- W4316804852 type Work @default.
- W4316804852 citedByCount "1" @default.
- W4316804852 countsByYear W43168048522023 @default.
- W4316804852 crossrefType "journal-article" @default.
- W4316804852 hasAuthorship W4316804852A5034029120 @default.
- W4316804852 hasAuthorship W4316804852A5053181184 @default.
- W4316804852 hasAuthorship W4316804852A5053628439 @default.
- W4316804852 hasAuthorship W4316804852A5064518250 @default.
- W4316804852 hasAuthorship W4316804852A5079654207 @default.
- W4316804852 hasBestOaLocation W43168048521 @default.
- W4316804852 hasConcept C104317684 @default.
- W4316804852 hasConcept C105795698 @default.
- W4316804852 hasConcept C119599485 @default.
- W4316804852 hasConcept C119857082 @default.
- W4316804852 hasConcept C124101348 @default.
- W4316804852 hasConcept C127413603 @default.
- W4316804852 hasConcept C153294291 @default.
- W4316804852 hasConcept C154945302 @default.
- W4316804852 hasConcept C159620131 @default.
- W4316804852 hasConcept C161067210 @default.
- W4316804852 hasConcept C177264268 @default.
- W4316804852 hasConcept C185592680 @default.
- W4316804852 hasConcept C199360897 @default.
- W4316804852 hasConcept C205649164 @default.
- W4316804852 hasConcept C33923547 @default.
- W4316804852 hasConcept C41008148 @default.
- W4316804852 hasConcept C50644808 @default.
- W4316804852 hasConcept C55493867 @default.
- W4316804852 hasConcept C58489278 @default.
- W4316804852 hasConcept C63479239 @default.
- W4316804852 hasConcept C78600449 @default.
- W4316804852 hasConceptScore W4316804852C104317684 @default.
- W4316804852 hasConceptScore W4316804852C105795698 @default.
- W4316804852 hasConceptScore W4316804852C119599485 @default.
- W4316804852 hasConceptScore W4316804852C119857082 @default.
- W4316804852 hasConceptScore W4316804852C124101348 @default.
- W4316804852 hasConceptScore W4316804852C127413603 @default.
- W4316804852 hasConceptScore W4316804852C153294291 @default.
- W4316804852 hasConceptScore W4316804852C154945302 @default.
- W4316804852 hasConceptScore W4316804852C159620131 @default.
- W4316804852 hasConceptScore W4316804852C161067210 @default.
- W4316804852 hasConceptScore W4316804852C177264268 @default.
- W4316804852 hasConceptScore W4316804852C185592680 @default.
- W4316804852 hasConceptScore W4316804852C199360897 @default.
- W4316804852 hasConceptScore W4316804852C205649164 @default.
- W4316804852 hasConceptScore W4316804852C33923547 @default.
- W4316804852 hasConceptScore W4316804852C41008148 @default.
- W4316804852 hasConceptScore W4316804852C50644808 @default.
- W4316804852 hasConceptScore W4316804852C55493867 @default.
- W4316804852 hasConceptScore W4316804852C58489278 @default.
- W4316804852 hasConceptScore W4316804852C63479239 @default.
- W4316804852 hasConceptScore W4316804852C78600449 @default.