Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317038478> ?p ?o ?g. }
- W4317038478 endingPage "10649" @default.
- W4317038478 startingPage "10633" @default.
- W4317038478 abstract "Online developer communities like GitHub allow a massive number of developers to collaborate. However, the openness of the communities makes them vulnerable to different types of malicious attacks, since attackers can easily join these communities and interact with legitimate users. In this work, we propose GitSec, a deep learning-based solution for detecting malicious accounts in online developer communities. GitSec distinguishes malicious accounts from legitimate ones based on the account profiles, dynamic activity characteristics, as well as social interactions. First, GitSec introduces two user activity sequences and applies a parallel neural network design with an attention mechanism to process the sequences. Second, GitSec constructs two graphs to represent the interactions between users according to their repository operations. Especially, graph neural networks and structural hole theory are employed to deal with the two constructed graphs. Third, GitSec makes use of the descriptive features to enhance the detection performance. The final judgement is made by a decision maker implemented by a supervised machine learning-based classifier. Based on the real-world data of GitHub users, our comprehensive evaluations show that GitSec achieves a better performance than state-of-the-art solutions, with an AUC value of 0.916." @default.
- W4317038478 created "2023-01-18" @default.
- W4317038478 creator A5004529272 @default.
- W4317038478 creator A5006822602 @default.
- W4317038478 creator A5029925982 @default.
- W4317038478 creator A5030919234 @default.
- W4317038478 creator A5034618391 @default.
- W4317038478 creator A5038474630 @default.
- W4317038478 creator A5068627204 @default.
- W4317038478 creator A5069437467 @default.
- W4317038478 date "2023-10-01" @default.
- W4317038478 modified "2023-10-15" @default.
- W4317038478 title "Detecting Malicious Accounts in Online Developer Communities Using Deep Learning" @default.
- W4317038478 cites W1574936677 @default.
- W4317038478 cites W1963872805 @default.
- W4317038478 cites W1979675303 @default.
- W4317038478 cites W2016707451 @default.
- W4317038478 cites W2040915209 @default.
- W4317038478 cites W2047443612 @default.
- W4317038478 cites W2064675550 @default.
- W4317038478 cites W2072715695 @default.
- W4317038478 cites W2084413241 @default.
- W4317038478 cites W2090212887 @default.
- W4317038478 cites W2092277251 @default.
- W4317038478 cites W2144160189 @default.
- W4317038478 cites W2152202842 @default.
- W4317038478 cites W2153644028 @default.
- W4317038478 cites W2157331557 @default.
- W4317038478 cites W2158698691 @default.
- W4317038478 cites W2168248828 @default.
- W4317038478 cites W2247575671 @default.
- W4317038478 cites W2517575093 @default.
- W4317038478 cites W2574529824 @default.
- W4317038478 cites W2588102994 @default.
- W4317038478 cites W2604283646 @default.
- W4317038478 cites W2604992511 @default.
- W4317038478 cites W2605108175 @default.
- W4317038478 cites W2753189782 @default.
- W4317038478 cites W2754370068 @default.
- W4317038478 cites W2764040154 @default.
- W4317038478 cites W2893523217 @default.
- W4317038478 cites W2897862648 @default.
- W4317038478 cites W2901141332 @default.
- W4317038478 cites W2911964244 @default.
- W4317038478 cites W2945266622 @default.
- W4317038478 cites W2962736666 @default.
- W4317038478 cites W2962960408 @default.
- W4317038478 cites W2965857891 @default.
- W4317038478 cites W2986868741 @default.
- W4317038478 cites W2987246247 @default.
- W4317038478 cites W3094390815 @default.
- W4317038478 cites W3098653001 @default.
- W4317038478 cites W3099136959 @default.
- W4317038478 cites W3100848837 @default.
- W4317038478 cites W3102476541 @default.
- W4317038478 cites W3152893301 @default.
- W4317038478 cites W3153858161 @default.
- W4317038478 cites W3160879595 @default.
- W4317038478 cites W3165963211 @default.
- W4317038478 cites W3173682469 @default.
- W4317038478 cites W3178807794 @default.
- W4317038478 cites W3210430800 @default.
- W4317038478 cites W4206991245 @default.
- W4317038478 cites W4210257598 @default.
- W4317038478 cites W4236620421 @default.
- W4317038478 cites W4244387885 @default.
- W4317038478 doi "https://doi.org/10.1109/tkde.2023.3237838" @default.
- W4317038478 hasPublicationYear "2023" @default.
- W4317038478 type Work @default.
- W4317038478 citedByCount "0" @default.
- W4317038478 crossrefType "journal-article" @default.
- W4317038478 hasAuthorship W4317038478A5004529272 @default.
- W4317038478 hasAuthorship W4317038478A5006822602 @default.
- W4317038478 hasAuthorship W4317038478A5029925982 @default.
- W4317038478 hasAuthorship W4317038478A5030919234 @default.
- W4317038478 hasAuthorship W4317038478A5034618391 @default.
- W4317038478 hasAuthorship W4317038478A5038474630 @default.
- W4317038478 hasAuthorship W4317038478A5068627204 @default.
- W4317038478 hasAuthorship W4317038478A5069437467 @default.
- W4317038478 hasBestOaLocation W43170384782 @default.
- W4317038478 hasConcept C119857082 @default.
- W4317038478 hasConcept C124101348 @default.
- W4317038478 hasConcept C154945302 @default.
- W4317038478 hasConcept C15744967 @default.
- W4317038478 hasConcept C17744445 @default.
- W4317038478 hasConcept C199539241 @default.
- W4317038478 hasConcept C2776548248 @default.
- W4317038478 hasConcept C41008148 @default.
- W4317038478 hasConcept C50644808 @default.
- W4317038478 hasConcept C77805123 @default.
- W4317038478 hasConcept C84976871 @default.
- W4317038478 hasConcept C95623464 @default.
- W4317038478 hasConceptScore W4317038478C119857082 @default.
- W4317038478 hasConceptScore W4317038478C124101348 @default.
- W4317038478 hasConceptScore W4317038478C154945302 @default.
- W4317038478 hasConceptScore W4317038478C15744967 @default.
- W4317038478 hasConceptScore W4317038478C17744445 @default.
- W4317038478 hasConceptScore W4317038478C199539241 @default.