Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317042343> ?p ?o ?g. }
- W4317042343 endingPage "285" @default.
- W4317042343 startingPage "285" @default.
- W4317042343 abstract "Combating mental illnesses such as depression and anxiety has become a global concern. As a result of the necessity for finding effective ways to battle these problems, machine learning approaches have been included in healthcare systems for the diagnosis and probable prediction of the treatment outcomes of mental health conditions. With the growing interest in machine and deep learning methods, analysis of existing work to guide future research directions is necessary. In this study, 33 articles on the diagnosis of schizophrenia, depression, anxiety, bipolar disorder, post-traumatic stress disorder (PTSD), anorexia nervosa, and attention deficit hyperactivity disorder (ADHD) were retrieved from various search databases using the preferred reporting items for systematic reviews and meta-analysis (PRISMA) review methodology. These publications were chosen based on their use of machine learning and deep learning technologies, individually assessed, and their recommended methodologies were then classified into the various disorders included in this study. In addition, the difficulties encountered by the researchers are discussed, and a list of some public datasets is provided." @default.
- W4317042343 created "2023-01-18" @default.
- W4317042343 creator A5000982136 @default.
- W4317042343 creator A5003118085 @default.
- W4317042343 creator A5080821531 @default.
- W4317042343 creator A5087619194 @default.
- W4317042343 creator A5090678306 @default.
- W4317042343 date "2023-01-17" @default.
- W4317042343 modified "2023-10-18" @default.
- W4317042343 title "A Review of Machine Learning and Deep Learning Approaches on Mental Health Diagnosis" @default.
- W4317042343 cites W1560723556 @default.
- W4317042343 cites W1639640383 @default.
- W4317042343 cites W1973431159 @default.
- W4317042343 cites W1976066595 @default.
- W4317042343 cites W2000442546 @default.
- W4317042343 cites W2005501262 @default.
- W4317042343 cites W2057256634 @default.
- W4317042343 cites W2061378977 @default.
- W4317042343 cites W2074037951 @default.
- W4317042343 cites W2075529349 @default.
- W4317042343 cites W2143902665 @default.
- W4317042343 cites W2271387649 @default.
- W4317042343 cites W2526261811 @default.
- W4317042343 cites W2542212960 @default.
- W4317042343 cites W2587570926 @default.
- W4317042343 cites W2729451077 @default.
- W4317042343 cites W2734832579 @default.
- W4317042343 cites W2737280991 @default.
- W4317042343 cites W2748635631 @default.
- W4317042343 cites W2753205644 @default.
- W4317042343 cites W2753776964 @default.
- W4317042343 cites W2789863594 @default.
- W4317042343 cites W2796886891 @default.
- W4317042343 cites W2805240699 @default.
- W4317042343 cites W2809356716 @default.
- W4317042343 cites W2885726350 @default.
- W4317042343 cites W2894305195 @default.
- W4317042343 cites W2897444637 @default.
- W4317042343 cites W2913420771 @default.
- W4317042343 cites W2919115771 @default.
- W4317042343 cites W2962848499 @default.
- W4317042343 cites W2981679558 @default.
- W4317042343 cites W2985355520 @default.
- W4317042343 cites W2993242472 @default.
- W4317042343 cites W3005049612 @default.
- W4317042343 cites W3021203631 @default.
- W4317042343 cites W3025161810 @default.
- W4317042343 cites W3028774941 @default.
- W4317042343 cites W3036757378 @default.
- W4317042343 cites W3080095395 @default.
- W4317042343 cites W3088436919 @default.
- W4317042343 cites W3088778742 @default.
- W4317042343 cites W3091839024 @default.
- W4317042343 cites W3092036847 @default.
- W4317042343 cites W3092221689 @default.
- W4317042343 cites W3094873959 @default.
- W4317042343 cites W3097497201 @default.
- W4317042343 cites W3107335993 @default.
- W4317042343 cites W3131041270 @default.
- W4317042343 cites W3131296279 @default.
- W4317042343 cites W3134049262 @default.
- W4317042343 cites W3161724753 @default.
- W4317042343 cites W3173621492 @default.
- W4317042343 cites W3191452947 @default.
- W4317042343 cites W3203726726 @default.
- W4317042343 cites W3214493799 @default.
- W4317042343 cites W4220931217 @default.
- W4317042343 cites W4223514854 @default.
- W4317042343 cites W4224924082 @default.
- W4317042343 cites W4250750670 @default.
- W4317042343 cites W4255421341 @default.
- W4317042343 cites W4286698007 @default.
- W4317042343 cites W4288096326 @default.
- W4317042343 cites W3015677584 @default.
- W4317042343 doi "https://doi.org/10.3390/healthcare11030285" @default.
- W4317042343 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36766860" @default.
- W4317042343 hasPublicationYear "2023" @default.
- W4317042343 type Work @default.
- W4317042343 citedByCount "4" @default.
- W4317042343 countsByYear W43170423432023 @default.
- W4317042343 crossrefType "journal-article" @default.
- W4317042343 hasAuthorship W4317042343A5000982136 @default.
- W4317042343 hasAuthorship W4317042343A5003118085 @default.
- W4317042343 hasAuthorship W4317042343A5080821531 @default.
- W4317042343 hasAuthorship W4317042343A5087619194 @default.
- W4317042343 hasAuthorship W4317042343A5090678306 @default.
- W4317042343 hasBestOaLocation W43170423431 @default.
- W4317042343 hasConcept C108583219 @default.
- W4317042343 hasConcept C118552586 @default.
- W4317042343 hasConcept C119857082 @default.
- W4317042343 hasConcept C134362201 @default.
- W4317042343 hasConcept C139719470 @default.
- W4317042343 hasConcept C154945302 @default.
- W4317042343 hasConcept C15744967 @default.
- W4317042343 hasConcept C162324750 @default.
- W4317042343 hasConcept C2776174506 @default.
- W4317042343 hasConcept C2776394216 @default.
- W4317042343 hasConcept C2776412080 @default.