Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317042484> ?p ?o ?g. }
- W4317042484 endingPage "744" @default.
- W4317042484 startingPage "744" @default.
- W4317042484 abstract "Background: Radiographic knee osteoarthritis (OA) severity and clinical severity are often dissociated. Artificial intelligence (AI) aid was shown to increase inter-rater reliability in radiographic OA diagnosis. Thus, AI-aided radiographic diagnoses were compared against AI-unaided diagnoses with regard to their correlations with clinical severity. Methods: Seventy-one DICOMs (m/f = 27:42, mean age: 27.86 ± 6.5) (X-ray format) were used for AI analysis (KOALA software, IB Lab GmbH). Subjects were recruited from a physiotherapy trial (MLKOA). At baseline, each subject received (i) a knee X-ray and (ii) an assessment of five main scores (Tegner Scale (TAS); Knee Injury and Osteoarthritis Outcome Score (KOOS); International Physical Activity Questionnaire; Star Excursion Balance Test; Six-Minute Walk Test). Clinical assessments were repeated three times (weeks 6, 12 and 24). Three physicians analyzed the presented X-rays both with and without AI via KL grading. Analyses of the (i) inter-rater reliability (IRR) and (ii) Spearman’s Correlation Test for the overall KL score for each individual rater with clinical score were performed. Results: We found that AI-aided diagnostic ratings had a higher association with the overall KL score and the KOOS. The amount of improvement due to AI depended on the individual rater. Conclusion: AI-guided systems can improve the ratings of knee radiographs and show a stronger association with clinical severity. These results were shown to be influenced by individual readers. Thus, AI training amongst physicians might need to be increased. KL might be insufficient as a single tool for knee OA diagnosis." @default.
- W4317042484 created "2023-01-18" @default.
- W4317042484 creator A5005484603 @default.
- W4317042484 creator A5005657687 @default.
- W4317042484 creator A5013440732 @default.
- W4317042484 creator A5030934706 @default.
- W4317042484 creator A5055104752 @default.
- W4317042484 creator A5059383690 @default.
- W4317042484 creator A5071002307 @default.
- W4317042484 creator A5076546970 @default.
- W4317042484 creator A5078398277 @default.
- W4317042484 creator A5081722143 @default.
- W4317042484 creator A5091065607 @default.
- W4317042484 date "2023-01-17" @default.
- W4317042484 modified "2023-10-01" @default.
- W4317042484 title "Artificial-Intelligence-Aided Radiographic Diagnostic of Knee Osteoarthritis Leads to a Higher Association of Clinical Findings with Diagnostic Ratings" @default.
- W4317042484 cites W1716794597 @default.
- W4317042484 cites W1965318232 @default.
- W4317042484 cites W1967057044 @default.
- W4317042484 cites W1967170359 @default.
- W4317042484 cites W1980695871 @default.
- W4317042484 cites W1990354342 @default.
- W4317042484 cites W2002356290 @default.
- W4317042484 cites W2006331513 @default.
- W4317042484 cites W2013904927 @default.
- W4317042484 cites W2037706551 @default.
- W4317042484 cites W2037870068 @default.
- W4317042484 cites W2050748927 @default.
- W4317042484 cites W2053691787 @default.
- W4317042484 cites W2057208793 @default.
- W4317042484 cites W2066376041 @default.
- W4317042484 cites W2078399784 @default.
- W4317042484 cites W2083800250 @default.
- W4317042484 cites W2097984233 @default.
- W4317042484 cites W2113670619 @default.
- W4317042484 cites W2121608866 @default.
- W4317042484 cites W2128882188 @default.
- W4317042484 cites W2140513563 @default.
- W4317042484 cites W2142251176 @default.
- W4317042484 cites W2154253115 @default.
- W4317042484 cites W2160746241 @default.
- W4317042484 cites W2166592703 @default.
- W4317042484 cites W2274971583 @default.
- W4317042484 cites W2511822287 @default.
- W4317042484 cites W2531345424 @default.
- W4317042484 cites W2730931835 @default.
- W4317042484 cites W2898438708 @default.
- W4317042484 cites W2898570789 @default.
- W4317042484 cites W2914069220 @default.
- W4317042484 cites W2989588734 @default.
- W4317042484 cites W3127145315 @default.
- W4317042484 cites W3130756609 @default.
- W4317042484 cites W4211067786 @default.
- W4317042484 cites W4213424514 @default.
- W4317042484 cites W4220706730 @default.
- W4317042484 cites W4220713020 @default.
- W4317042484 cites W4220837799 @default.
- W4317042484 cites W4225975150 @default.
- W4317042484 cites W4280649794 @default.
- W4317042484 cites W4283079435 @default.
- W4317042484 cites W4309098263 @default.
- W4317042484 cites W4312551381 @default.
- W4317042484 doi "https://doi.org/10.3390/jcm12030744" @default.
- W4317042484 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36769394" @default.
- W4317042484 hasPublicationYear "2023" @default.
- W4317042484 type Work @default.
- W4317042484 citedByCount "0" @default.
- W4317042484 crossrefType "journal-article" @default.
- W4317042484 hasAuthorship W4317042484A5005484603 @default.
- W4317042484 hasAuthorship W4317042484A5005657687 @default.
- W4317042484 hasAuthorship W4317042484A5013440732 @default.
- W4317042484 hasAuthorship W4317042484A5030934706 @default.
- W4317042484 hasAuthorship W4317042484A5055104752 @default.
- W4317042484 hasAuthorship W4317042484A5059383690 @default.
- W4317042484 hasAuthorship W4317042484A5071002307 @default.
- W4317042484 hasAuthorship W4317042484A5076546970 @default.
- W4317042484 hasAuthorship W4317042484A5078398277 @default.
- W4317042484 hasAuthorship W4317042484A5081722143 @default.
- W4317042484 hasAuthorship W4317042484A5091065607 @default.
- W4317042484 hasBestOaLocation W43170424841 @default.
- W4317042484 hasConcept C126838900 @default.
- W4317042484 hasConcept C127413603 @default.
- W4317042484 hasConcept C141071460 @default.
- W4317042484 hasConcept C142724271 @default.
- W4317042484 hasConcept C147176958 @default.
- W4317042484 hasConcept C1862650 @default.
- W4317042484 hasConcept C204787440 @default.
- W4317042484 hasConcept C2776164576 @default.
- W4317042484 hasConcept C2777286243 @default.
- W4317042484 hasConcept C36454342 @default.
- W4317042484 hasConcept C534262118 @default.
- W4317042484 hasConcept C71924100 @default.
- W4317042484 hasConceptScore W4317042484C126838900 @default.
- W4317042484 hasConceptScore W4317042484C127413603 @default.
- W4317042484 hasConceptScore W4317042484C141071460 @default.
- W4317042484 hasConceptScore W4317042484C142724271 @default.
- W4317042484 hasConceptScore W4317042484C147176958 @default.
- W4317042484 hasConceptScore W4317042484C1862650 @default.