Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317103662> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4317103662 endingPage "66" @default.
- W4317103662 startingPage "66" @default.
- W4317103662 abstract "The ability to interpret multimodal data, and map the targets and anomalies within, is important for an automatic recognition system. Due to the expensive and time-consuming nature of multimodal time-series data annotation in the training stage, multimodal time-series image understanding, from drone and quadruped mobile robot platforms, is a challenging task for remote sensing and photogrammetry. In this regard, robust methods must be computationally low-cost, due to the limited data on aerial and ground-based platforms, yet accurate enough to meet certainty measures. In this study, a few-shot learning architecture, based on a squeeze-and-attention structure, is proposed for multimodal target detection, using time-series images from the drone and quadruped robot platforms with a small training dataset. To build robust algorithms in target detection, a squeeze-and-attention structure has been developed from multimodal time-series images from limited training data as an optimized method. The proposed architecture was validated on three datasets with multiple modalities (e.g., red-green-blue, color-infrared, and thermal), achieving competitive results." @default.
- W4317103662 created "2023-01-18" @default.
- W4317103662 creator A5035403090 @default.
- W4317103662 creator A5084273890 @default.
- W4317103662 date "2023-01-17" @default.
- W4317103662 modified "2023-10-14" @default.
- W4317103662 title "Multimodal Few-Shot Target Detection Based on Uncertainty Analysis in Time-Series Images" @default.
- W4317103662 cites W1969443303 @default.
- W4317103662 cites W2734349601 @default.
- W4317103662 cites W2772387153 @default.
- W4317103662 cites W2884490794 @default.
- W4317103662 cites W2886554959 @default.
- W4317103662 cites W2914726226 @default.
- W4317103662 cites W2963024893 @default.
- W4317103662 cites W3005588957 @default.
- W4317103662 cites W3028752951 @default.
- W4317103662 cites W3034681889 @default.
- W4317103662 cites W3041133507 @default.
- W4317103662 cites W3088260678 @default.
- W4317103662 cites W3091001089 @default.
- W4317103662 cites W3097539571 @default.
- W4317103662 cites W3105604940 @default.
- W4317103662 cites W3123390980 @default.
- W4317103662 cites W3138063840 @default.
- W4317103662 cites W3167935049 @default.
- W4317103662 cites W3172394904 @default.
- W4317103662 cites W3191664608 @default.
- W4317103662 cites W3196496131 @default.
- W4317103662 cites W3197030491 @default.
- W4317103662 cites W4210465622 @default.
- W4317103662 cites W4280581474 @default.
- W4317103662 cites W4285189777 @default.
- W4317103662 cites W4285387431 @default.
- W4317103662 cites W4292070756 @default.
- W4317103662 cites W4292623249 @default.
- W4317103662 cites W4309733281 @default.
- W4317103662 cites W4312233286 @default.
- W4317103662 doi "https://doi.org/10.3390/drones7020066" @default.
- W4317103662 hasPublicationYear "2023" @default.
- W4317103662 type Work @default.
- W4317103662 citedByCount "1" @default.
- W4317103662 countsByYear W43171036622023 @default.
- W4317103662 crossrefType "journal-article" @default.
- W4317103662 hasAuthorship W4317103662A5035403090 @default.
- W4317103662 hasAuthorship W4317103662A5084273890 @default.
- W4317103662 hasBestOaLocation W43171036621 @default.
- W4317103662 hasConcept C127413603 @default.
- W4317103662 hasConcept C153180895 @default.
- W4317103662 hasConcept C154945302 @default.
- W4317103662 hasConcept C201995342 @default.
- W4317103662 hasConcept C2780451532 @default.
- W4317103662 hasConcept C31972630 @default.
- W4317103662 hasConcept C34413123 @default.
- W4317103662 hasConcept C41008148 @default.
- W4317103662 hasConcept C54355233 @default.
- W4317103662 hasConcept C59519942 @default.
- W4317103662 hasConcept C86803240 @default.
- W4317103662 hasConcept C90509273 @default.
- W4317103662 hasConceptScore W4317103662C127413603 @default.
- W4317103662 hasConceptScore W4317103662C153180895 @default.
- W4317103662 hasConceptScore W4317103662C154945302 @default.
- W4317103662 hasConceptScore W4317103662C201995342 @default.
- W4317103662 hasConceptScore W4317103662C2780451532 @default.
- W4317103662 hasConceptScore W4317103662C31972630 @default.
- W4317103662 hasConceptScore W4317103662C34413123 @default.
- W4317103662 hasConceptScore W4317103662C41008148 @default.
- W4317103662 hasConceptScore W4317103662C54355233 @default.
- W4317103662 hasConceptScore W4317103662C59519942 @default.
- W4317103662 hasConceptScore W4317103662C86803240 @default.
- W4317103662 hasConceptScore W4317103662C90509273 @default.
- W4317103662 hasIssue "2" @default.
- W4317103662 hasLocation W43171036621 @default.
- W4317103662 hasLocation W43171036622 @default.
- W4317103662 hasOpenAccess W4317103662 @default.
- W4317103662 hasPrimaryLocation W43171036621 @default.
- W4317103662 hasRelatedWork W2033423548 @default.
- W4317103662 hasRelatedWork W2045758229 @default.
- W4317103662 hasRelatedWork W2962829499 @default.
- W4317103662 hasRelatedWork W3101676691 @default.
- W4317103662 hasRelatedWork W405964254 @default.
- W4317103662 hasRelatedWork W4220882927 @default.
- W4317103662 hasRelatedWork W4231626925 @default.
- W4317103662 hasRelatedWork W4233452137 @default.
- W4317103662 hasRelatedWork W4254857216 @default.
- W4317103662 hasRelatedWork W4319778706 @default.
- W4317103662 hasVolume "7" @default.
- W4317103662 isParatext "false" @default.
- W4317103662 isRetracted "false" @default.
- W4317103662 workType "article" @default.