Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317106149> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W4317106149 endingPage "217" @default.
- W4317106149 startingPage "208" @default.
- W4317106149 abstract "Machine learning (ML) is often used to solve the problem of malware detection and classification and various machine learning approaches are adapted to the problem of malware classification; still acquiring poor performance by the way of feature selection, and classification. To manage the issue, an efficient Adaptive Feature Centric XG Boost Ensemble Learner Classifier “AFC-XG Boost” novel algorithm is presented in this paper. The proposed model has been designed to handle varying data sets of malware detection obtained from Kaggle data set. The model turns the process of XG Boost classifier in several stages to optimize the performance. At preprocessing stage, the data set given has been noise removed, normalized and tamper removed using Feature Base Optimizer “FBO” algorithm. The FBO would normalize the data points as well as performs noise removal according to the feature values and their base information. Similarly, the performance of standard XG Boost has been optimized by adapting Feature selection using Class Based Principle Component Analysis “CBPCA” algorithm, which performs feature selection according to the fitness of any feature for different classes. Based on the selected features, the method generates regression tree for each feature considered. Based on the generated trees, the method performs classification by computing Tree Level Ensemble Similarity “TLES” and Class Level Ensemble Similarity “CLES”. Using both method computes the value of Class Match Similarity “CMS” based on which the malware has been classified. The proposed approach achieves 97% accuracy in malware detection and classification with the less time complexity of 34 seconds for 75000 samples" @default.
- W4317106149 created "2023-01-18" @default.
- W4317106149 creator A5019274924 @default.
- W4317106149 creator A5086995793 @default.
- W4317106149 date "2022-12-31" @default.
- W4317106149 modified "2023-10-18" @default.
- W4317106149 title "An Adaptive Feature Centric XG Boost Ensemble Classifier Model for Improved Malware Detection and Classification" @default.
- W4317106149 doi "https://doi.org/10.17762/ijritcc.v10i2s.5930" @default.
- W4317106149 hasPublicationYear "2022" @default.
- W4317106149 type Work @default.
- W4317106149 citedByCount "0" @default.
- W4317106149 crossrefType "journal-article" @default.
- W4317106149 hasAuthorship W4317106149A5019274924 @default.
- W4317106149 hasAuthorship W4317106149A5086995793 @default.
- W4317106149 hasBestOaLocation W43171061491 @default.
- W4317106149 hasConcept C111919701 @default.
- W4317106149 hasConcept C119857082 @default.
- W4317106149 hasConcept C124101348 @default.
- W4317106149 hasConcept C138885662 @default.
- W4317106149 hasConcept C148483581 @default.
- W4317106149 hasConcept C153180895 @default.
- W4317106149 hasConcept C154945302 @default.
- W4317106149 hasConcept C2776401178 @default.
- W4317106149 hasConcept C34736171 @default.
- W4317106149 hasConcept C41008148 @default.
- W4317106149 hasConcept C41895202 @default.
- W4317106149 hasConcept C541664917 @default.
- W4317106149 hasConcept C95623464 @default.
- W4317106149 hasConceptScore W4317106149C111919701 @default.
- W4317106149 hasConceptScore W4317106149C119857082 @default.
- W4317106149 hasConceptScore W4317106149C124101348 @default.
- W4317106149 hasConceptScore W4317106149C138885662 @default.
- W4317106149 hasConceptScore W4317106149C148483581 @default.
- W4317106149 hasConceptScore W4317106149C153180895 @default.
- W4317106149 hasConceptScore W4317106149C154945302 @default.
- W4317106149 hasConceptScore W4317106149C2776401178 @default.
- W4317106149 hasConceptScore W4317106149C34736171 @default.
- W4317106149 hasConceptScore W4317106149C41008148 @default.
- W4317106149 hasConceptScore W4317106149C41895202 @default.
- W4317106149 hasConceptScore W4317106149C541664917 @default.
- W4317106149 hasConceptScore W4317106149C95623464 @default.
- W4317106149 hasIssue "2s" @default.
- W4317106149 hasLocation W43171061491 @default.
- W4317106149 hasOpenAccess W4317106149 @default.
- W4317106149 hasPrimaryLocation W43171061491 @default.
- W4317106149 hasRelatedWork W2066259560 @default.
- W4317106149 hasRelatedWork W2380927352 @default.
- W4317106149 hasRelatedWork W2391959412 @default.
- W4317106149 hasRelatedWork W2563096758 @default.
- W4317106149 hasRelatedWork W2998450079 @default.
- W4317106149 hasRelatedWork W3130682519 @default.
- W4317106149 hasRelatedWork W4210605141 @default.
- W4317106149 hasRelatedWork W4225292389 @default.
- W4317106149 hasRelatedWork W4293525103 @default.
- W4317106149 hasRelatedWork W4386716810 @default.
- W4317106149 hasVolume "10" @default.
- W4317106149 isParatext "false" @default.
- W4317106149 isRetracted "false" @default.
- W4317106149 workType "article" @default.