Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317181824> ?p ?o ?g. }
- W4317181824 abstract "BACKGROUND AND AIM: Cities in the developing world are expanding rapidly and undergoing changes to their roads, housing and other buildings, vegetation, and land use characteristics. Timely data are needed to ensure that urban change enhance health, wellbeing and sustainability. METHODS: We characterise, as mutually exclusive clusters, the complex, multidimensional, built and natural environments in cities with high-resolution satellite images and unsupervised deep clustering. We apply our approach to Accra, Ghana, one of the fastest growing cities in the developing world, and contextualise the resultant clusters with demographic and environmental data that were not used for clustering. RESULTS: We show that image-based clusters captured distinct features of the urban built environment (building count, size, density, and orientation; length and arrangement of roads), vegetation, water, and population, either as a unique defining characteristic (e.g., bodies of water or dense vegetation) or in combination (e.g., buildings surrounded by vegetation or sparsely populated areas intermixed with roads). Clusters that were based on single defining characteristics were robust to the spatial scale of analysis and choice of cluster number, whereas those based on a combination of defining characteristics changed based on scale and number of clusters. CONCLUSION: The results demonstrate that satellite data and unsupervised deep learning provide a cost-effective interpretable and scalable approach for real-time tracking of sustainable urban development, especially where traditional environmental and demographic data are limited and not frequently updated. Our approach has multiple urban environmental applications, such as providing ground data for tracking and measuring urban health, air- and noise pollution, urban connectivity and road traffic, as well as city growth in cities across Africa and beyond. KEYWORDS: Big data, satellite imagery, deep learning, built environment; urban growth, unsupervised machine learning" @default.
- W4317181824 created "2023-01-18" @default.
- W4317181824 creator A5000498973 @default.
- W4317181824 creator A5004494703 @default.
- W4317181824 creator A5006827927 @default.
- W4317181824 creator A5019645068 @default.
- W4317181824 creator A5031566650 @default.
- W4317181824 creator A5033149786 @default.
- W4317181824 creator A5042248442 @default.
- W4317181824 creator A5045099889 @default.
- W4317181824 creator A5048585766 @default.
- W4317181824 creator A5055670978 @default.
- W4317181824 creator A5059823739 @default.
- W4317181824 creator A5063780110 @default.
- W4317181824 creator A5065451124 @default.
- W4317181824 creator A5081610629 @default.
- W4317181824 creator A5084007856 @default.
- W4317181824 creator A5086368010 @default.
- W4317181824 date "2022-09-18" @default.
- W4317181824 modified "2023-10-18" @default.
- W4317181824 title "Characterization of urban built and natural environments with high-resolution satellite images and unsupervised deep learning" @default.
- W4317181824 doi "https://doi.org/10.1289/isee.2022.o-op-019" @default.
- W4317181824 hasPublicationYear "2022" @default.
- W4317181824 type Work @default.
- W4317181824 citedByCount "0" @default.
- W4317181824 crossrefType "journal-article" @default.
- W4317181824 hasAuthorship W4317181824A5000498973 @default.
- W4317181824 hasAuthorship W4317181824A5004494703 @default.
- W4317181824 hasAuthorship W4317181824A5006827927 @default.
- W4317181824 hasAuthorship W4317181824A5019645068 @default.
- W4317181824 hasAuthorship W4317181824A5031566650 @default.
- W4317181824 hasAuthorship W4317181824A5033149786 @default.
- W4317181824 hasAuthorship W4317181824A5042248442 @default.
- W4317181824 hasAuthorship W4317181824A5045099889 @default.
- W4317181824 hasAuthorship W4317181824A5048585766 @default.
- W4317181824 hasAuthorship W4317181824A5055670978 @default.
- W4317181824 hasAuthorship W4317181824A5059823739 @default.
- W4317181824 hasAuthorship W4317181824A5063780110 @default.
- W4317181824 hasAuthorship W4317181824A5065451124 @default.
- W4317181824 hasAuthorship W4317181824A5081610629 @default.
- W4317181824 hasAuthorship W4317181824A5084007856 @default.
- W4317181824 hasAuthorship W4317181824A5086368010 @default.
- W4317181824 hasConcept C107826830 @default.
- W4317181824 hasConcept C108583219 @default.
- W4317181824 hasConcept C127413603 @default.
- W4317181824 hasConcept C142724271 @default.
- W4317181824 hasConcept C146978453 @default.
- W4317181824 hasConcept C147176958 @default.
- W4317181824 hasConcept C148803439 @default.
- W4317181824 hasConcept C154945302 @default.
- W4317181824 hasConcept C19269812 @default.
- W4317181824 hasConcept C205649164 @default.
- W4317181824 hasConcept C2776133958 @default.
- W4317181824 hasConcept C2778102629 @default.
- W4317181824 hasConcept C2778755073 @default.
- W4317181824 hasConcept C2908647359 @default.
- W4317181824 hasConcept C39432304 @default.
- W4317181824 hasConcept C41008148 @default.
- W4317181824 hasConcept C49545453 @default.
- W4317181824 hasConcept C58640448 @default.
- W4317181824 hasConcept C62649853 @default.
- W4317181824 hasConcept C71924100 @default.
- W4317181824 hasConcept C73555534 @default.
- W4317181824 hasConcept C8038995 @default.
- W4317181824 hasConcept C99454951 @default.
- W4317181824 hasConceptScore W4317181824C107826830 @default.
- W4317181824 hasConceptScore W4317181824C108583219 @default.
- W4317181824 hasConceptScore W4317181824C127413603 @default.
- W4317181824 hasConceptScore W4317181824C142724271 @default.
- W4317181824 hasConceptScore W4317181824C146978453 @default.
- W4317181824 hasConceptScore W4317181824C147176958 @default.
- W4317181824 hasConceptScore W4317181824C148803439 @default.
- W4317181824 hasConceptScore W4317181824C154945302 @default.
- W4317181824 hasConceptScore W4317181824C19269812 @default.
- W4317181824 hasConceptScore W4317181824C205649164 @default.
- W4317181824 hasConceptScore W4317181824C2776133958 @default.
- W4317181824 hasConceptScore W4317181824C2778102629 @default.
- W4317181824 hasConceptScore W4317181824C2778755073 @default.
- W4317181824 hasConceptScore W4317181824C2908647359 @default.
- W4317181824 hasConceptScore W4317181824C39432304 @default.
- W4317181824 hasConceptScore W4317181824C41008148 @default.
- W4317181824 hasConceptScore W4317181824C49545453 @default.
- W4317181824 hasConceptScore W4317181824C58640448 @default.
- W4317181824 hasConceptScore W4317181824C62649853 @default.
- W4317181824 hasConceptScore W4317181824C71924100 @default.
- W4317181824 hasConceptScore W4317181824C73555534 @default.
- W4317181824 hasConceptScore W4317181824C8038995 @default.
- W4317181824 hasConceptScore W4317181824C99454951 @default.
- W4317181824 hasIssue "1" @default.
- W4317181824 hasLocation W43171818241 @default.
- W4317181824 hasOpenAccess W4317181824 @default.
- W4317181824 hasPrimaryLocation W43171818241 @default.
- W4317181824 hasRelatedWork W117302946 @default.
- W4317181824 hasRelatedWork W2057962381 @default.
- W4317181824 hasRelatedWork W2085322521 @default.
- W4317181824 hasRelatedWork W2116047388 @default.
- W4317181824 hasRelatedWork W2161197664 @default.
- W4317181824 hasRelatedWork W2363258459 @default.
- W4317181824 hasRelatedWork W2404280692 @default.
- W4317181824 hasRelatedWork W2507283493 @default.