Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317192447> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W4317192447 endingPage "267" @default.
- W4317192447 startingPage "267" @default.
- W4317192447 abstract "In this paper, the multi-linear regression and random forest method are used to model and predict the axial piston pump noise. Experimental data is used to model and predict the pump noise as a function of valve seat material, pump speed and pressure. The models are developed using an optimum data proportion, determined using the K-fold cross-validation technique. For comparative analysis, a cascaded neural network is also used for modelling and predicting purposes. Our results reveal that the random forest method is statistically better than the other methods in modelling and predicting the pump noise. Specifically, the mean-squared errors between the three regression models and the neural network model with respect to the experimental data are 10.82, 4.95, 3.97, and 1.26, and the values of the coefficient of determination (R2) are 0.79, 0.92, 0.93 and 0.96, respectively. The corresponding values for the random forest model are 0.56 and 0.98, respectively." @default.
- W4317192447 created "2023-01-18" @default.
- W4317192447 creator A5027132014 @default.
- W4317192447 creator A5040928454 @default.
- W4317192447 creator A5077772679 @default.
- W4317192447 date "2022-01-01" @default.
- W4317192447 modified "2023-09-27" @default.
- W4317192447 title "Predictive modelling of pump noise using multi-linear regression and random-forest models - via optimal data splitting" @default.
- W4317192447 doi "https://doi.org/10.1504/ijspm.2022.128274" @default.
- W4317192447 hasPublicationYear "2022" @default.
- W4317192447 type Work @default.
- W4317192447 citedByCount "0" @default.
- W4317192447 crossrefType "journal-article" @default.
- W4317192447 hasAuthorship W4317192447A5027132014 @default.
- W4317192447 hasAuthorship W4317192447A5040928454 @default.
- W4317192447 hasAuthorship W4317192447A5077772679 @default.
- W4317192447 hasConcept C105795698 @default.
- W4317192447 hasConcept C115961682 @default.
- W4317192447 hasConcept C120665830 @default.
- W4317192447 hasConcept C121332964 @default.
- W4317192447 hasConcept C127413603 @default.
- W4317192447 hasConcept C152877465 @default.
- W4317192447 hasConcept C154945302 @default.
- W4317192447 hasConcept C165699331 @default.
- W4317192447 hasConcept C169258074 @default.
- W4317192447 hasConcept C199524791 @default.
- W4317192447 hasConcept C33923547 @default.
- W4317192447 hasConcept C41008148 @default.
- W4317192447 hasConcept C48921125 @default.
- W4317192447 hasConcept C50644808 @default.
- W4317192447 hasConcept C65120314 @default.
- W4317192447 hasConcept C78519656 @default.
- W4317192447 hasConcept C83546350 @default.
- W4317192447 hasConcept C83800877 @default.
- W4317192447 hasConcept C99498987 @default.
- W4317192447 hasConceptScore W4317192447C105795698 @default.
- W4317192447 hasConceptScore W4317192447C115961682 @default.
- W4317192447 hasConceptScore W4317192447C120665830 @default.
- W4317192447 hasConceptScore W4317192447C121332964 @default.
- W4317192447 hasConceptScore W4317192447C127413603 @default.
- W4317192447 hasConceptScore W4317192447C152877465 @default.
- W4317192447 hasConceptScore W4317192447C154945302 @default.
- W4317192447 hasConceptScore W4317192447C165699331 @default.
- W4317192447 hasConceptScore W4317192447C169258074 @default.
- W4317192447 hasConceptScore W4317192447C199524791 @default.
- W4317192447 hasConceptScore W4317192447C33923547 @default.
- W4317192447 hasConceptScore W4317192447C41008148 @default.
- W4317192447 hasConceptScore W4317192447C48921125 @default.
- W4317192447 hasConceptScore W4317192447C50644808 @default.
- W4317192447 hasConceptScore W4317192447C65120314 @default.
- W4317192447 hasConceptScore W4317192447C78519656 @default.
- W4317192447 hasConceptScore W4317192447C83546350 @default.
- W4317192447 hasConceptScore W4317192447C83800877 @default.
- W4317192447 hasConceptScore W4317192447C99498987 @default.
- W4317192447 hasIssue "4" @default.
- W4317192447 hasLocation W43171924471 @default.
- W4317192447 hasOpenAccess W4317192447 @default.
- W4317192447 hasPrimaryLocation W43171924471 @default.
- W4317192447 hasRelatedWork W2018697919 @default.
- W4317192447 hasRelatedWork W2060912888 @default.
- W4317192447 hasRelatedWork W2062105804 @default.
- W4317192447 hasRelatedWork W2375721435 @default.
- W4317192447 hasRelatedWork W247449116 @default.
- W4317192447 hasRelatedWork W3122861356 @default.
- W4317192447 hasRelatedWork W3173590662 @default.
- W4317192447 hasRelatedWork W4290879003 @default.
- W4317192447 hasRelatedWork W2184922845 @default.
- W4317192447 hasRelatedWork W2738033194 @default.
- W4317192447 hasVolume "18" @default.
- W4317192447 isParatext "false" @default.
- W4317192447 isRetracted "false" @default.
- W4317192447 workType "article" @default.