Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317207123> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4317207123 endingPage "1816" @default.
- W4317207123 startingPage "1816" @default.
- W4317207123 abstract "In recent years, as machine learning has been widely studied in the field of architecture, scholars have demonstrated that computers can be used to learn the graphical features of building façade generation. However, existing deep learning in façade generation has yet to generate only a single façade, without comprehensive generation of five façades including the roof. Moreover, most of the existing literature has utilized the Pix2Pix algorithm for façade generation experiments, failing to attempt to replace the original generator in Pix2Pix with a different generator for experiments. This study addresses the above issues by collecting and filtering entries from the international Solar Decathlon (SD competition) to obtain a data set. Subsequently, a low-rise residential building façade generation model based on the Pix2Pix neural network was constructed for training and testing. At the same time, the original U-net generator in Pix2Pix was replaced with three different generators, U-net++, HRNet and AttU-net, for training and test results were obtained. The results were evaluated from both subjective and objective aspects and it was found that the AttU-net generative network showed the best comprehensive generation performance for such façades. HRNet is acceptable if there is a need for fast training and generation" @default.
- W4317207123 created "2023-01-18" @default.
- W4317207123 creator A5007285299 @default.
- W4317207123 creator A5015167931 @default.
- W4317207123 creator A5015622212 @default.
- W4317207123 creator A5044301848 @default.
- W4317207123 creator A5047855118 @default.
- W4317207123 creator A5068653057 @default.
- W4317207123 creator A5088242752 @default.
- W4317207123 date "2023-01-18" @default.
- W4317207123 modified "2023-09-30" @default.
- W4317207123 title "A Deep Learning-Based Approach to Generating Comprehensive Building Façades for Low-Rise Housing" @default.
- W4317207123 cites W2133665775 @default.
- W4317207123 cites W2916798096 @default.
- W4317207123 cites W2962793481 @default.
- W4317207123 cites W2963073614 @default.
- W4317207123 cites W2997994322 @default.
- W4317207123 cites W3035574324 @default.
- W4317207123 cites W3136225759 @default.
- W4317207123 cites W3191007626 @default.
- W4317207123 cites W3214830544 @default.
- W4317207123 cites W4283808966 @default.
- W4317207123 doi "https://doi.org/10.3390/su15031816" @default.
- W4317207123 hasPublicationYear "2023" @default.
- W4317207123 type Work @default.
- W4317207123 citedByCount "2" @default.
- W4317207123 countsByYear W43172071232023 @default.
- W4317207123 crossrefType "journal-article" @default.
- W4317207123 hasAuthorship W4317207123A5007285299 @default.
- W4317207123 hasAuthorship W4317207123A5015167931 @default.
- W4317207123 hasAuthorship W4317207123A5015622212 @default.
- W4317207123 hasAuthorship W4317207123A5044301848 @default.
- W4317207123 hasAuthorship W4317207123A5047855118 @default.
- W4317207123 hasAuthorship W4317207123A5068653057 @default.
- W4317207123 hasAuthorship W4317207123A5088242752 @default.
- W4317207123 hasBestOaLocation W43172071231 @default.
- W4317207123 hasConcept C108583219 @default.
- W4317207123 hasConcept C121332964 @default.
- W4317207123 hasConcept C154945302 @default.
- W4317207123 hasConcept C163258240 @default.
- W4317207123 hasConcept C177264268 @default.
- W4317207123 hasConcept C199360897 @default.
- W4317207123 hasConcept C2780992000 @default.
- W4317207123 hasConcept C39890363 @default.
- W4317207123 hasConcept C41008148 @default.
- W4317207123 hasConcept C50644808 @default.
- W4317207123 hasConcept C62520636 @default.
- W4317207123 hasConceptScore W4317207123C108583219 @default.
- W4317207123 hasConceptScore W4317207123C121332964 @default.
- W4317207123 hasConceptScore W4317207123C154945302 @default.
- W4317207123 hasConceptScore W4317207123C163258240 @default.
- W4317207123 hasConceptScore W4317207123C177264268 @default.
- W4317207123 hasConceptScore W4317207123C199360897 @default.
- W4317207123 hasConceptScore W4317207123C2780992000 @default.
- W4317207123 hasConceptScore W4317207123C39890363 @default.
- W4317207123 hasConceptScore W4317207123C41008148 @default.
- W4317207123 hasConceptScore W4317207123C50644808 @default.
- W4317207123 hasConceptScore W4317207123C62520636 @default.
- W4317207123 hasIssue "3" @default.
- W4317207123 hasLocation W43172071231 @default.
- W4317207123 hasOpenAccess W4317207123 @default.
- W4317207123 hasPrimaryLocation W43172071231 @default.
- W4317207123 hasRelatedWork W2731899572 @default.
- W4317207123 hasRelatedWork W2900186347 @default.
- W4317207123 hasRelatedWork W2903477224 @default.
- W4317207123 hasRelatedWork W2939353110 @default.
- W4317207123 hasRelatedWork W3009238340 @default.
- W4317207123 hasRelatedWork W3215138031 @default.
- W4317207123 hasRelatedWork W4312962853 @default.
- W4317207123 hasRelatedWork W4321369474 @default.
- W4317207123 hasRelatedWork W4327774331 @default.
- W4317207123 hasRelatedWork W4360585206 @default.
- W4317207123 hasVolume "15" @default.
- W4317207123 isParatext "false" @default.
- W4317207123 isRetracted "false" @default.
- W4317207123 workType "article" @default.