Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317233797> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4317233797 endingPage "119562" @default.
- W4317233797 startingPage "119562" @default.
- W4317233797 abstract "Due to the growth of e-commerce and online payment methods, the number of fraudulent transactions has increased. Financial institutions with online payment systems must utilize automatic fraud detection systems to reduce losses incurred due to fraudulent activities. The problem of fraud detection is often formulated as a binary classification model that can distinguish fraudulent transactions. Embedding the input data of the fraud dataset into a lower-dimensional representation is crucial to building robust and accurate fraud detection systems. This study proposes a two-stage framework to detect fraudulent transactions that incorporates a deep Autoencoder as a representation learning method, and supervised deep learning techniques. The experimental evaluations revealed that the proposed approach improves the performance of the employed deep learning-based classifiers. Specifically, the utilized deep learning classifiers trained on the transformed data set obtained by the deep Autoencoder significantly outperform their baseline classifiers trained on the original data in terms of all performance measures. Besides, models created using deep Autoencoder outperform those created using the principal component analysis (PCA)-obtained dataset as well as the existing models." @default.
- W4317233797 created "2023-01-18" @default.
- W4317233797 creator A5057409216 @default.
- W4317233797 creator A5070133377 @default.
- W4317233797 date "2023-05-01" @default.
- W4317233797 modified "2023-10-02" @default.
- W4317233797 title "A novel combined approach based on deep Autoencoder and deep classifiers for credit card fraud detection" @default.
- W4317233797 cites W1902237438 @default.
- W4317233797 cites W1993990445 @default.
- W4317233797 cites W2014885136 @default.
- W4317233797 cites W2038136632 @default.
- W4317233797 cites W2045049630 @default.
- W4317233797 cites W2064675550 @default.
- W4317233797 cites W2085766370 @default.
- W4317233797 cites W2088402748 @default.
- W4317233797 cites W2230049528 @default.
- W4317233797 cites W2779931100 @default.
- W4317233797 cites W2783741221 @default.
- W4317233797 cites W2786577118 @default.
- W4317233797 cites W2789081542 @default.
- W4317233797 cites W2806487644 @default.
- W4317233797 cites W2898516482 @default.
- W4317233797 cites W2963122061 @default.
- W4317233797 cites W3006542816 @default.
- W4317233797 cites W3048656210 @default.
- W4317233797 cites W3095164600 @default.
- W4317233797 cites W3137091086 @default.
- W4317233797 cites W3187004996 @default.
- W4317233797 cites W3195056262 @default.
- W4317233797 cites W3203072121 @default.
- W4317233797 cites W4200465265 @default.
- W4317233797 cites W4206777259 @default.
- W4317233797 cites W4226152068 @default.
- W4317233797 cites W4282966553 @default.
- W4317233797 doi "https://doi.org/10.1016/j.eswa.2023.119562" @default.
- W4317233797 hasPublicationYear "2023" @default.
- W4317233797 type Work @default.
- W4317233797 citedByCount "10" @default.
- W4317233797 countsByYear W43172337972023 @default.
- W4317233797 crossrefType "journal-article" @default.
- W4317233797 hasAuthorship W4317233797A5057409216 @default.
- W4317233797 hasAuthorship W4317233797A5070133377 @default.
- W4317233797 hasConcept C101738243 @default.
- W4317233797 hasConcept C108583219 @default.
- W4317233797 hasConcept C119857082 @default.
- W4317233797 hasConcept C12267149 @default.
- W4317233797 hasConcept C124101348 @default.
- W4317233797 hasConcept C136764020 @default.
- W4317233797 hasConcept C145097563 @default.
- W4317233797 hasConcept C153180895 @default.
- W4317233797 hasConcept C154945302 @default.
- W4317233797 hasConcept C17744445 @default.
- W4317233797 hasConcept C199539241 @default.
- W4317233797 hasConcept C2776359362 @default.
- W4317233797 hasConcept C2780747020 @default.
- W4317233797 hasConcept C2983355114 @default.
- W4317233797 hasConcept C41008148 @default.
- W4317233797 hasConcept C66905080 @default.
- W4317233797 hasConcept C94625758 @default.
- W4317233797 hasConceptScore W4317233797C101738243 @default.
- W4317233797 hasConceptScore W4317233797C108583219 @default.
- W4317233797 hasConceptScore W4317233797C119857082 @default.
- W4317233797 hasConceptScore W4317233797C12267149 @default.
- W4317233797 hasConceptScore W4317233797C124101348 @default.
- W4317233797 hasConceptScore W4317233797C136764020 @default.
- W4317233797 hasConceptScore W4317233797C145097563 @default.
- W4317233797 hasConceptScore W4317233797C153180895 @default.
- W4317233797 hasConceptScore W4317233797C154945302 @default.
- W4317233797 hasConceptScore W4317233797C17744445 @default.
- W4317233797 hasConceptScore W4317233797C199539241 @default.
- W4317233797 hasConceptScore W4317233797C2776359362 @default.
- W4317233797 hasConceptScore W4317233797C2780747020 @default.
- W4317233797 hasConceptScore W4317233797C2983355114 @default.
- W4317233797 hasConceptScore W4317233797C41008148 @default.
- W4317233797 hasConceptScore W4317233797C66905080 @default.
- W4317233797 hasConceptScore W4317233797C94625758 @default.
- W4317233797 hasLocation W43172337971 @default.
- W4317233797 hasOpenAccess W4317233797 @default.
- W4317233797 hasPrimaryLocation W43172337971 @default.
- W4317233797 hasRelatedWork W2669956259 @default.
- W4317233797 hasRelatedWork W2998168123 @default.
- W4317233797 hasRelatedWork W3124465223 @default.
- W4317233797 hasRelatedWork W3140676842 @default.
- W4317233797 hasRelatedWork W4220882156 @default.
- W4317233797 hasRelatedWork W4281858644 @default.
- W4317233797 hasRelatedWork W4287995534 @default.
- W4317233797 hasRelatedWork W4312950082 @default.
- W4317233797 hasRelatedWork W4317233797 @default.
- W4317233797 hasRelatedWork W4372061094 @default.
- W4317233797 hasVolume "217" @default.
- W4317233797 isParatext "false" @default.
- W4317233797 isRetracted "false" @default.
- W4317233797 workType "article" @default.