Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317234078> ?p ?o ?g. }
- W4317234078 abstract "Abstract Timely interventions have a proven benefit for people experiencing psychotic illness. One bottleneck to accessing timely interventions is the referral process to the specialist team for early psychosis (STEP). Many general practitioners lack awareness or confidence in recognising psychotic symptoms or state. Additionally, referrals for people without apparent psychotic symptoms, although beneficial at a population level, lead to excessive workload for STEPs. There is a clear unmet need for accurate stratification of STEPs users and healthy cohorts. Here we propose a new approach to addressing this need via the application of digital behavioural tests. To discriminate between the STEPs users (SU; n=32) and controls (n=32, age and sex matched), we employed k-nearest neighbours (kNN) classifier, and applied it to objective, quantitative and interpretable features derived from the ‘mirror game’ (MG) and trail making task (TMT). The MG is a movement coordination task shown to be a potential socio-motor biomarker of schizophrenia, while TMT is a neuropsychiatric test of cognitive function. We show that the proposed classifier achieves an excellent performance, AUC = 0.89 (95%CI 0.73-1), Sensitivity = 0.75 (95%CI 0.5-1), Specificity = 1 (95%CI 0.62-1), evaluated on 25% hold-out and 1000 folds. We demonstrate that this performance is underpinned by the large effect sizes of the differences between the cohorts in terms of the features used for classification. We also find that MG and TMT are unsuitable in isolation to successfully differentiate between SU with and without at-risk-mental-state or first episode psychosis with sufficient level of performance. Our findings show that introduction of standardised battery of digital behavioural tests could benefit both clinical and research practice. Including digital behavioural tests into healthcare practice could allow precise phenotyping and stratification of the highly heterogenous population of people referred to STEPs resulting in quicker and more personalised diagnosis. Moreover, the high specificity of digital behavioural tests could facilitate the identification of more homogeneous clinical high-risk populations, benefiting research on prognostic instruments for psychosis. In summary, our study demonstrates that cheap off-the-shelf equipment (laptop computer and a leap motion sensor) can be used to record clinically relevant behavioural data that could be utilised in digital mental health applications. Author summary Neuropsychiatric assessment and accurate diagnosis are notoriously challenging. Psychosis represents a classical example of this challenge where many at-risk of psychotic illness individuals (often very young) are misdiagnosed and/or inappropriately treated clinically. Our study demonstrates that combining digital tests with data analytics has potential for simplifying neuropsychiatric assessment. It shows that using measurements from TMT and MG allows to differentiate between people accepted for assessment in specialist team for early psychosis (STEP) and controls with excellent performance (AUROC > 0.9), while achieving 100% specificity (no false positive detections). The study shows feasibility of using cheap, portable equipment, assembled from off-the-shelf components, for collection of clinically relevant data that could be used to inform clinical decision making. Moreover, our study, with its state-of-the-art performance and interpretable results, demonstrate high clinical potential of implementing digital batteries of behavioural tests in clinical practice. Such developments would not only help to stratify STEPs users but would facilitate rapid assessment for all people seeking care in early intervention services. This in turn would contribute to improving the quality of life and wellbeing of individuals at risk of developing psychosis. Funding EPSRC Impact Acceleration Account, Impact & Knowledge Exchange Award, Jean Golding Institute seed corn, Avon & Wiltshire Mental Health Partnership NHS Trust Research Capability Funding. PS was generously supported by the Wellcome Trust Institutional Strategic Support Award 204909/Z/16/Z. KTA gratefully acknowledges the financial support of the EPSRC via grant EP/T017856/1. For the purpose of open access, the authors have applied a ‘Creative Commons Attribution (CC BY) licence to any Author Accepted Manuscript version arising." @default.
- W4317234078 created "2023-01-18" @default.
- W4317234078 creator A5008629741 @default.
- W4317234078 creator A5033339412 @default.
- W4317234078 creator A5045016502 @default.
- W4317234078 creator A5048215895 @default.
- W4317234078 creator A5059217815 @default.
- W4317234078 creator A5061928341 @default.
- W4317234078 creator A5064996955 @default.
- W4317234078 creator A5071764681 @default.
- W4317234078 creator A5073190253 @default.
- W4317234078 date "2023-01-18" @default.
- W4317234078 modified "2023-09-25" @default.
- W4317234078 title "Digital behavioural tests as diagnostic aid for psychosis" @default.
- W4317234078 cites W1528588208 @default.
- W4317234078 cites W1566273302 @default.
- W4317234078 cites W1978813754 @default.
- W4317234078 cites W1993889588 @default.
- W4317234078 cites W2024621431 @default.
- W4317234078 cites W2045913053 @default.
- W4317234078 cites W2048887010 @default.
- W4317234078 cites W2055173454 @default.
- W4317234078 cites W2069862078 @default.
- W4317234078 cites W2071458663 @default.
- W4317234078 cites W2080242280 @default.
- W4317234078 cites W2124459709 @default.
- W4317234078 cites W2132322340 @default.
- W4317234078 cites W2150456075 @default.
- W4317234078 cites W2156110142 @default.
- W4317234078 cites W2321690866 @default.
- W4317234078 cites W2345286053 @default.
- W4317234078 cites W2528788985 @default.
- W4317234078 cites W2564565011 @default.
- W4317234078 cites W2736175914 @default.
- W4317234078 cites W2737791222 @default.
- W4317234078 cites W2761303892 @default.
- W4317234078 cites W2787894218 @default.
- W4317234078 cites W2791186104 @default.
- W4317234078 cites W2793532662 @default.
- W4317234078 cites W2809798567 @default.
- W4317234078 cites W2887435007 @default.
- W4317234078 cites W2887866686 @default.
- W4317234078 cites W2905040296 @default.
- W4317234078 cites W2982374275 @default.
- W4317234078 cites W2988631967 @default.
- W4317234078 cites W2990717138 @default.
- W4317234078 cites W2991741382 @default.
- W4317234078 cites W2995493247 @default.
- W4317234078 cites W2999299338 @default.
- W4317234078 cites W3008517807 @default.
- W4317234078 cites W3012454928 @default.
- W4317234078 cites W3024135489 @default.
- W4317234078 cites W3043510830 @default.
- W4317234078 cites W3048593133 @default.
- W4317234078 cites W3082625755 @default.
- W4317234078 cites W3085900994 @default.
- W4317234078 cites W3094849016 @default.
- W4317234078 cites W3100311933 @default.
- W4317234078 cites W3107428759 @default.
- W4317234078 cites W3109292663 @default.
- W4317234078 cites W3110824040 @default.
- W4317234078 cites W3118236590 @default.
- W4317234078 cites W3166978358 @default.
- W4317234078 cites W3170541036 @default.
- W4317234078 cites W3182961820 @default.
- W4317234078 cites W3210053571 @default.
- W4317234078 cites W4200051344 @default.
- W4317234078 cites W4200611866 @default.
- W4317234078 cites W4231678396 @default.
- W4317234078 cites W4281707390 @default.
- W4317234078 cites W4285087155 @default.
- W4317234078 cites W4292994367 @default.
- W4317234078 cites W4308891917 @default.
- W4317234078 doi "https://doi.org/10.1101/2023.01.14.23284551" @default.
- W4317234078 hasPublicationYear "2023" @default.
- W4317234078 type Work @default.
- W4317234078 citedByCount "0" @default.
- W4317234078 crossrefType "posted-content" @default.
- W4317234078 hasAuthorship W4317234078A5008629741 @default.
- W4317234078 hasAuthorship W4317234078A5033339412 @default.
- W4317234078 hasAuthorship W4317234078A5045016502 @default.
- W4317234078 hasAuthorship W4317234078A5048215895 @default.
- W4317234078 hasAuthorship W4317234078A5059217815 @default.
- W4317234078 hasAuthorship W4317234078A5061928341 @default.
- W4317234078 hasAuthorship W4317234078A5064996955 @default.
- W4317234078 hasAuthorship W4317234078A5071764681 @default.
- W4317234078 hasAuthorship W4317234078A5073190253 @default.
- W4317234078 hasBestOaLocation W43172340781 @default.
- W4317234078 hasConcept C111919701 @default.
- W4317234078 hasConcept C118552586 @default.
- W4317234078 hasConcept C154945302 @default.
- W4317234078 hasConcept C15744967 @default.
- W4317234078 hasConcept C169900460 @default.
- W4317234078 hasConcept C27415008 @default.
- W4317234078 hasConcept C2776135927 @default.
- W4317234078 hasConcept C2778476105 @default.
- W4317234078 hasConcept C2779727114 @default.
- W4317234078 hasConcept C2908647359 @default.
- W4317234078 hasConcept C2909614370 @default.
- W4317234078 hasConcept C41008148 @default.