Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317369567> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4317369567 endingPage "103" @default.
- W4317369567 startingPage "85" @default.
- W4317369567 abstract "We design a fully discrete MFE (Mixed Finite Element) scheme, based on a PDM (Primal-Dual Mixed) formulation, combined with the Crank-Nicolson method for multidimensional parabolic equations in which the finite element spaces are included in Hdiv and L2. We state and prove novel convergence results with convergence rate towards the “velocity” p(t)=−∇u(t) and “pressure” u(t) in, respectively, the L∞(Hdiv) and W1,∞(L2) norms, under assumption that the solution is smooth, in a general setting of finite element spaces which require only the known discrete assumption of inf−sup and a coerciveness hypothesis similar to that developed in [15, Theorem 7.4.1, Page 249] for the case of elliptic equations. The order is proved to be two in time and is optimal in space. These results are obtained thanks to a new well-developed discrete a priori estimate. We apply these results to two known families of finite element spaces. The first one is the RTl (Raviart-Thomas finite elements of an arbitrary order l) and the second one has been proposed by Brezzi, Douglas and Marini in dimension d=2 and by Brezzi, Douglas, Duran and Fortin when d=3. For these two families, it is proved that the order is respectively k2+hl+1 and k2+hl in the L∞(Hdiv)×W1,∞(L2)-norm (L∞(Hdiv) for velocity and W1,∞(L2) for pressure) when using respectively RTl and spaces of piecewise polynomials of degree less than or equal l, where h (resp. k) is the mesh size of the space (resp. time) discretization. Some other possible second order time accurate PDMFE schemes are also discussed. This work is an extension and improvement of two previous works. The first one is [3] in which similar estimates are proved for first order time (order one in time) accurate PDMFE under a restrictive hypothesis between the finite elements spaces. This hypothesis is a particular case of the one considered here. The second work is [4] in which a new convergence result with convergence rate towards only the “velocity” p(t)=−∇u(t) in only the norm of L2(Hdiv) is proved using the particular case of the lowest degree Raviart-Thomas Spaces RT0 as discretization in space combined with the use of Crank-Nicolson method as discretization in time. This contribution is motivated by two pioneer works in MFEMs (Mixed Finite Element Methods) for two dimensional parabolic equations. The first one is [13] in which the convergence of semi-discrete MFE (discretization is only in space) schemes is proved towards velocity and pressure in only L∞((L2)2) and L∞(L2) norms, see [13, Theorem 2.1]. The second work is [18] in which a fully discrete scheme, based on a MFE formulation which is different from that we consider here, is established. The finite element spaces considered in [18] are included in (L2)2 and H01. In addition to the difference in the spaces considered here and in [18], the formulation of the scheme presented here is simpler than that of [18]." @default.
- W4317369567 created "2023-01-19" @default.
- W4317369567 creator A5050186185 @default.
- W4317369567 creator A5052952879 @default.
- W4317369567 date "2023-03-01" @default.
- W4317369567 modified "2023-10-03" @default.
- W4317369567 title "Novel analysis approach for the convergence of a second order time accurate mixed finite element scheme for parabolic equations" @default.
- W4317369567 cites W1580847363 @default.
- W4317369567 cites W1963532761 @default.
- W4317369567 cites W1989302672 @default.
- W4317369567 cites W2034686390 @default.
- W4317369567 cites W2084005055 @default.
- W4317369567 cites W2735367980 @default.
- W4317369567 cites W2898636786 @default.
- W4317369567 cites W2912770683 @default.
- W4317369567 cites W3005532823 @default.
- W4317369567 cites W3012267081 @default.
- W4317369567 cites W3196193042 @default.
- W4317369567 cites W81385328 @default.
- W4317369567 doi "https://doi.org/10.1016/j.camwa.2023.01.001" @default.
- W4317369567 hasPublicationYear "2023" @default.
- W4317369567 type Work @default.
- W4317369567 citedByCount "0" @default.
- W4317369567 crossrefType "journal-article" @default.
- W4317369567 hasAuthorship W4317369567A5050186185 @default.
- W4317369567 hasAuthorship W4317369567A5052952879 @default.
- W4317369567 hasConcept C10138342 @default.
- W4317369567 hasConcept C119599485 @default.
- W4317369567 hasConcept C121332964 @default.
- W4317369567 hasConcept C127162648 @default.
- W4317369567 hasConcept C127413603 @default.
- W4317369567 hasConcept C134306372 @default.
- W4317369567 hasConcept C135628077 @default.
- W4317369567 hasConcept C144468803 @default.
- W4317369567 hasConcept C162324750 @default.
- W4317369567 hasConcept C164660894 @default.
- W4317369567 hasConcept C17744445 @default.
- W4317369567 hasConcept C182306322 @default.
- W4317369567 hasConcept C191795146 @default.
- W4317369567 hasConcept C199539241 @default.
- W4317369567 hasConcept C2777303404 @default.
- W4317369567 hasConcept C28826006 @default.
- W4317369567 hasConcept C33923547 @default.
- W4317369567 hasConcept C50522688 @default.
- W4317369567 hasConcept C57869625 @default.
- W4317369567 hasConcept C97355855 @default.
- W4317369567 hasConceptScore W4317369567C10138342 @default.
- W4317369567 hasConceptScore W4317369567C119599485 @default.
- W4317369567 hasConceptScore W4317369567C121332964 @default.
- W4317369567 hasConceptScore W4317369567C127162648 @default.
- W4317369567 hasConceptScore W4317369567C127413603 @default.
- W4317369567 hasConceptScore W4317369567C134306372 @default.
- W4317369567 hasConceptScore W4317369567C135628077 @default.
- W4317369567 hasConceptScore W4317369567C144468803 @default.
- W4317369567 hasConceptScore W4317369567C162324750 @default.
- W4317369567 hasConceptScore W4317369567C164660894 @default.
- W4317369567 hasConceptScore W4317369567C17744445 @default.
- W4317369567 hasConceptScore W4317369567C182306322 @default.
- W4317369567 hasConceptScore W4317369567C191795146 @default.
- W4317369567 hasConceptScore W4317369567C199539241 @default.
- W4317369567 hasConceptScore W4317369567C2777303404 @default.
- W4317369567 hasConceptScore W4317369567C28826006 @default.
- W4317369567 hasConceptScore W4317369567C33923547 @default.
- W4317369567 hasConceptScore W4317369567C50522688 @default.
- W4317369567 hasConceptScore W4317369567C57869625 @default.
- W4317369567 hasConceptScore W4317369567C97355855 @default.
- W4317369567 hasLocation W43173695671 @default.
- W4317369567 hasOpenAccess W4317369567 @default.
- W4317369567 hasPrimaryLocation W43173695671 @default.
- W4317369567 hasRelatedWork W1968390457 @default.
- W4317369567 hasRelatedWork W1973136543 @default.
- W4317369567 hasRelatedWork W1987597427 @default.
- W4317369567 hasRelatedWork W2014245742 @default.
- W4317369567 hasRelatedWork W2050719393 @default.
- W4317369567 hasRelatedWork W2065203193 @default.
- W4317369567 hasRelatedWork W2138419695 @default.
- W4317369567 hasRelatedWork W2567809292 @default.
- W4317369567 hasRelatedWork W2920716278 @default.
- W4317369567 hasRelatedWork W4281485387 @default.
- W4317369567 hasVolume "133" @default.
- W4317369567 isParatext "false" @default.
- W4317369567 isRetracted "false" @default.
- W4317369567 workType "article" @default.